Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Accelerated re-epithelialization in β3-integrin-deficient- mice is associated with enhanced TGF-β1 signaling

Abstract

The upregulation of TGF-β1 and integrin expression during wound healing has implicated these molecules in this process, but their precise regulation and roles remain unclear. Here we report that, notably, mice lacking β3-integrins show enhanced wound healing with re-epithelialization complete several days earlier than in wild-type mice. We show that this effect is the result of an increase in TGF-β1 and enhanced dermal fibroblast infiltration into wounds of β3-null mice. Specifically, β3-integrin deficiency is associated with elevated TGF-β receptor I and receptor II expression, reduced Smad3 levels, sustained Smad2 and Smad4 nuclear localization and enhanced TGF-β1-mediated dermal fibroblast migration. These data indicate that αvβ3–integrin can suppress TGF-β1-mediated signaling, thereby controlling the rate of wound healing, and highlight a new mechanism for TGF-β1 regulation by β3-integrins.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Re-epithelialization is accelerated in β3-integrin–deficient mice.
Figure 2: Tgfb1 mRNA and TGF-β1 protein levels are elevated in β3-integrin–deficient wounds.
Figure 3: Re-epithelialization is decreased in β3-null wounds injected with a TGF-β1 neutralizing antibody.
Figure 4: Dermal fibroblast infiltration is significantly elevated in β3-null wounds and accelerates re-epithelialization.
Figure 5: β3-deficient dermal fibroblasts have elevated levels of TGF-β RI, TGF-β RII, increased pSmad2 and decreased levels of Smad3.
Figure 6: β3-integrin deficiency enhances nuclear translocation of Smad2 and Smad4 and accelerates fibroblast migration in the presence of TGF-β1.

References

  1. Clark, R.A.F. Wound repair (overview and general conditions). in The Molecular and Cellular Biology of Wound Repair 2nd edn (ed. Clark, R.A.F.) (Plenum, New York, 1995).

    Google Scholar 

  2. Blobe, G.C., Schiemann, W.P. & Lodish, H.F. Mechanisms of disease: role of transforming growth factor β in human disease. N. Engl. J. Med. 342, 1350–1358 (2000).

    Article  CAS  Google Scholar 

  3. Massague, J. How cells read TGF-β signals. Nat. Rev. Mol. Cell Biol. 1, 169–178 (2000).

    Article  CAS  Google Scholar 

  4. Martin, P. Wound healing—aiming for perfect skin regeneration. Science 276, 75–81 (1997).

    Article  CAS  Google Scholar 

  5. Hebda, P.A. Stimulatory effects of transforming growth factor-beta and epidermal growth-factor on epidermal-cell outgrowth from porcine skin explant cultures. J. Invest. Dermatol. 91, 440–445 (1988).

    Article  CAS  Google Scholar 

  6. Wakefield, L. TGF-β signaling: positive and negative effects on tumorigenesis. Curr. Opin. Genet. Dev. 12, 22–29 (2002).

    Article  CAS  Google Scholar 

  7. Shah, M., Foreman, D.M. & Ferguson, M.W. Neutralising antibody to TGF-β 1,2 reduces cutaneous scarring in adult rodents. J. Cell Sci. 107, 1137–1157 (1994).

    CAS  PubMed  Google Scholar 

  8. Cordeiro, M.F. Transforming growth factor-β function blocking already effective as therapeutic strategy. Circulation 107, E37–E37 (2003).

    Article  CAS  Google Scholar 

  9. Shah, M., Foreman, D.M. & Ferguson, M.W.J. Neutralization of Tgf-β 1 and Tgf-β 2 or exogenous addition of Tgf-β 3 to cutaneous rat wounds reduces scarring. J. Cell Sci. 108, 985–1002 (1995).

    CAS  PubMed  Google Scholar 

  10. Amendt, C., Mann, A., Schirmacher, P. & Blessing, M. Resistance of keratinocytes to TGF β-mediated growth restriction and apoptosis induction accelerates re- epithelialization in skin wounds. J. Cell Sci. 115, 2189–2198 (2002).

    CAS  PubMed  Google Scholar 

  11. Leibovich, S.J. & Ross, R. The role of the macrophage in wound repair. A study with hydrocortisone and antimacrophage serum. Am. J. Pathol. 78, 71–100 (1975).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Gailit, J., Welch, M.P. & Clark, R.A.F. Tgf-β1 stimulates expression of keratinocyte integrins during reepithelialization of cutaneous wounds. J. Invest. Dermatol. 103, 221–227 (1994).

    Article  CAS  Google Scholar 

  13. Zambruno, G. et al. Transforming growth factor-β1 modulates β1 and β5 integrin receptors and induces the de novo expression of the αvβ6 heterodimer in normal human keratinocytes—implications for wound-healing. J. Cell Biol. 129, 853–865 (1995).

    Article  CAS  Google Scholar 

  14. Sellheyer, K. et al. Inhibition of skin development by overexpression of transforming growth factor β1 in the epidermis of transgenic mice. Proc. Natl. Acad. Sci. USA 90, 5237–5241 (1993).

    Article  CAS  Google Scholar 

  15. Yang, L. et al. Healing of burn wounds in transgenic mice overexpressing transforming growth factor-β1 in the epidermis. Am. J. Pathol. 159, 2147–2157 (2001).

    Article  CAS  Google Scholar 

  16. Garlick, J.A. & Taichman, L.B. Fate of human keratinocytes during reepithelialization in an organotypic culture model. Lab. Invest. 70, 916–924 (1994).

    CAS  PubMed  Google Scholar 

  17. Garlick, J.A. & Taichman, L.B. Effect of Tgf-β1 on reepithilialization of human keratinocytes in vitro–an organotypic model. J. Invest. Dermatol. 103, 554–559 (1994).

    Article  CAS  Google Scholar 

  18. Crowe, M.J., Doetschman, T. & Greenhalgh, D.G. Delayed wound healing in immunodeficient TGF-β1 knockout mice. J. Invest. Dermatol. 115, 3–11 (2000).

    Article  CAS  Google Scholar 

  19. Shah, M. et al. Role of elevated plasma transforming growth factor-β1 levels in wound healing. Am. J. Pathol. 154, 1115–1124 (1999).

    Article  CAS  Google Scholar 

  20. Larjava, H., Salo, T., Haapasalmi, K., Kramer, R.H. & Heino, J. Expression of integrins and basement-membrane components by wound keratinocytes. J. Clin. Invest. 92, 1425–1435 (1993).

    Article  CAS  Google Scholar 

  21. Greiling, D. & Clark, R.A.F. Fibronectin provides a conduit for fibroblast transmigration from collagenous stroma into fibrin clot provisional matrix. J. Cell Sci. 110, 861–870 (1997).

    CAS  PubMed  Google Scholar 

  22. Shattil, S.J. Function and regulation of the β3 integrins in hemostasis and vascular biology. Thromb. Haemost. 74, 149–155 (1995).

    CAS  PubMed  Google Scholar 

  23. Leavesley, D.I., Schwartz, M.A., Rosenfeld, M. & Cheresh, D.A. Integrin β 1-mediated and β3-mediated endothelial-cell migration is triggered through distinct signaling mechanisms. J. Cell Biol. 121, 163–170 (1993).

    Article  CAS  Google Scholar 

  24. Stefansson, S. & Lawrence, D.A. The serpin PAI-1 inhibits cell migration by blocking integrin αvβ3 binding to vitronectin. Nature 383, 441–443 (1996).

    Article  CAS  Google Scholar 

  25. Clark, R. Tonnesen, M.G., Gailit, J. & Cheresh, D.A. Transient functional expression of αvβ3 on vascular cells during wound repair. Am. J. Pathol. 148, 1407–1421 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Huang, X.Z. et al. Inactivation of the integrin β6 subunit gene reveals a role of epithelial integrins in regulating inflammation in the lung and skin. J. Cell Biol. 133, 921–928 (1996).

    Article  CAS  Google Scholar 

  27. Huang, X., Griffiths, M., Wu, J., Farese, R.V.J. & Sheppard, D. Normal development, wound healing, and adenovirus susceptibility in β5-deficient mice. Mol. Cell. Biol. 20, 755–759 (2000).

    Article  CAS  Google Scholar 

  28. Reynolds, L. et al. Enhanced pathological angiogenesis in mice lacking β3 integrin or β3 and β5 integrins. Nat. Med. 8, 27–34 (2002).

    Article  CAS  Google Scholar 

  29. Hodivala-Dilke, K. et al. β3-integrin-deficient mice are a model for Glanzmann thrombasthenia showing placental defects and reduced survival. J. Clin. Invest. 103, 229–238 (1999).

    Article  CAS  Google Scholar 

  30. Basson, C.T., Kocher, O., Basson, M.D., Asis, A. & Madri, J.A. Differential modulation of vascular cell integrin and extracellular-matrix expression in vitro by Tgf-β1 correlates with reciprocal effects on cell-migration. J. Cell. Physiol. 153, 118–128 (1992).

    Article  CAS  Google Scholar 

  31. Ignotz, R.A. & Massague, J. Transforming growth factor-β stimulates the expression of fibronectin and collagen and their incorporation into the extracellular matrix. J. Biol. Chem. 261, 4337–4345 (1986).

    CAS  PubMed  Google Scholar 

  32. Inman, G.J., Nicolas, F.J. & Hill, C.S. Nucleocytoplasmic shuttling of Smads 2, 3, and 4 permits sensing of TGF-β receptor activity. Mol. Cell 10, 283–294 (2002).

    Article  CAS  Google Scholar 

  33. Grose, R. et al. A crucial role of β1 integrins for keratinocyte migration in vitro and during cutaneous wound repair. Development 129, 2303–2315 (2002).

    CAS  PubMed  Google Scholar 

  34. Liaw, L. et al. Altered wound healing in mice lacking a functional osteopontin gene. J. Clin. Invest. 101, 1468–1478 (1998).

    Article  CAS  Google Scholar 

  35. Quaglino, D., Jr, Nanney, L.B., Ditesheim, J.A. & Davidson, J.M. Transforming growth factor-β stimulates wound healing and modulates extracellular matrix gene expression in pig skin: incisional wound model. J. Invest. Dermatol. 97, 34–42 (1991).

    CAS  PubMed  Google Scholar 

  36. Ashcroft, G. et al. Mice lacking Smad3 show accelerated wound healing and an impaired local inflammatory response. Nat. Cell Biol. 1, 260–266 (1999).

    Article  CAS  Google Scholar 

  37. Seoane, J., Le, H.V., Shen, L., Anderson, S.A. & Massague, J. Integration of Smad and forkhead pathways in the control of neuroepithelial and glioblastoma cell proliferation. Cell 117, 211–223 (2004).

    Article  CAS  Google Scholar 

  38. Reynolds, A.R. et al. Elevated Flk1 (Vascular endothelial growth factor receptor 2) signaling mediates enhanced angiogenesis in β3-integrin-deficient mice. Cancer Res. 64, 8643–8650 (2004).

    Article  CAS  Google Scholar 

  39. Jang, Y.C., Arumugam, S., Gibran, N.S. & Isik, F.F. Role of αv integrins and angiogenesis during wound repair. Wound Repair Regen. 7, 375–380 (1999).

    Article  CAS  Google Scholar 

  40. Wahl, S.M. et al. Transforming growth-factor type-β induces monocyte chemotaxis and growth-factor production. Proc. Natl. Acad. Sci. USA 84, 5788–5792 (1987).

    Article  CAS  Google Scholar 

  41. Martin, P. et al. Wound healing in the PU.1 null mouse—tissue repair is not dependent on inflammatory cells. Curr. Biol. 13, 1122–1128 (2003).

    Article  CAS  Google Scholar 

  42. Direkze, N.C. et al. Multiple organ engraftment by bone-marrow-derived myofibroblasts and fibroblasts in bone-marrow-tranplanted mice. Stem Cells 21, 514–520 (2003).

    Article  Google Scholar 

  43. Stupack, D., Puente, X., Boutsaboualoy, S., Storgard, C.M. & Cheresh, D.A. Apoptosis of adherent cells by recruitment of caspase-8 to unligated integrins. J. Cell Biol. 155, 459–470 (2001).

    Article  CAS  Google Scholar 

  44. Dennler, S., Huet, S. & Gauthier, J.M. A short amino-acid sequence in MH1 domain is responsible for functional differences between Smad2 and Smad3. Oncogene 18, 1643–1648 (1999).

    Article  CAS  Google Scholar 

  45. Yanagisawa, K. et al. Induction of apoptosis by Smad3 and down-regulation of Smad3 expression in response to TGF-β in human normal lung epithelial cells. Oncogene 17, 1743–1747 (1998).

    Article  CAS  Google Scholar 

  46. Lai, C.F. et al. Transforming growth factor-β up-regulates the β 5 integrin subunit expression via Sp1 and Smad signaling. J. Biol. Chem. 275, 36400–36406 (2000).

    Article  CAS  Google Scholar 

  47. Munger, J.S. et al. The integrin αvβ6 binds and activates latent TGFβ1: a mechanism for regulating pulmonary inflammation and fibrosis. Cell 96, 319–328 (1999).

    Article  CAS  Google Scholar 

  48. Diaz-Gonzalez, F., Forsyth, J., Steiner, B. & Ginsberg, M.H. Trans-dominant inhibition of integrin function. Mol. Biol. Cell 7, 1939–1951 (1996).

    Article  CAS  Google Scholar 

  49. Owens, D.M. Romero M.R., Gardner, C. & Watt FM. Suprabasal α6β4 integrin expression in epidermis results in enhanced tumourigenesis and disruption of TGFβ signalling. J. Cell Sci. 116, 3783–3791 (2003).

    Article  CAS  Google Scholar 

  50. DiPersio, C.M., Shah, S. & Hynes, R.O. α3Aβ1 integrin localizes to focal contacts in response to diverse extracellular matrix proteins. J. Cell Sci. 108, 2321–2336 (1995).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank C. Hill, G. Inman F. Parkinson, I. Hart, F. Watt, D. Owens and A. Daley for their helpful advice and criticisms throughout the work; S. Watling and C. Wren for their technical assistance; G. Elias and colleagues for help with histology; F. Balkwill's laboratory for technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K Hodivala-Dilke.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

Accelerated re-epithelialization is associated with enhanced epithelial migration. (PDF 60 kb)

Supplementary Fig. 2

Wound contraction is normal in β3-null wounds. (PDF 59 kb)

Supplementary Fig. 3

Sense control for in situ hybridization for Tgfb1 mRNA. (PDF 117 kb)

Supplementary Fig. 4

Negative control for TGF-β1 and P-smad2 immunostaining. (PDF 83 kb)

Supplementary Fig. 5

Keratinocyte proliferation is decreased, but dermal ECM deposition is increased in β3-integrin-deficient wounds. (PDF 663 kb)

Supplementary Fig. 6

Neutrophil numbers are not changed in β3-null wounds. (PDF 106 kb)

Supplementary Methods (PDF 36 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Reynolds, L., Conti, F., Lucas, M. et al. Accelerated re-epithelialization in β3-integrin-deficient- mice is associated with enhanced TGF-β1 signaling. Nat Med 11, 167–174 (2005). https://doi.org/10.1038/nm1165

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm1165

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing