Emerging flaviviruses: the spread and resurgence of Japanese encephalitis, West Nile and dengue viruses

Article metrics

Abstract

Mosquito-borne flaviviruses provide some of the most important examples of emerging and resurging diseases of global significance. Here, we describe three of them: the resurgence of dengue in tropical and subtropical areas of the world, and the spread and establishment of Japanese encephalitis and West Nile viruses in new habitats and environments. These three examples also illustrate the complexity of the various factors that contribute to their emergence, resurgence and spread. Whereas some of these factors are natural, such as bird migration, most are due to human activities, such as changes in land use, water impoundments and transportation, which result in changed epidemiological patterns. The three examples also show the ease with which mosquito-borne viruses can spread to and colonize new areas, and the need for continued international surveillance and improved public health infrastructure to meet future emerging disease threats.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: The global distribution and spread of the major Japanese encephalitis serological group members.
Figure 2: Approximate geographic distribution of WNV in the Americas, from 1999 to September 2004.
Figure 3: Dengue virus.
Figure 4
Figure 5
Figure 6

References

  1. 1

    Morse, S.S. Factors in the emergence of infectious diseases. Emerg. Infect. Dis. 1, 7–15 (1995).

  2. 2

    Heinz, F.X. et al. Family Flaviviridae, in Virus Taxonomy. 7th Report of the International Committee on Taxonomy of Viruses (eds. van Regenmortel, M.H. et al.) 859–878 (Academic, San Diego, 2000).

  3. 3

    Lindenbach, B.D. & Rice, C.M. Flaviviridae: The viruses and their replication, in Fields Virology 4th edn (eds. Knipe, D.M. & Howley, P.M.) 991–1042 (Lippincott Williams & Wilkins, Philadelphia, 2001).

  4. 4

    Westaway, E.G. & Blok, J. Taxonomy and evolutionary relationships of flaviviruses, in Dengue and Dengue Hemorrhagic Fever (eds. Gubler, D.J. & Kuno, G.) 147–173 (CAB International, London, 1997).

  5. 5

    Marin, M.S., Zanotto, P.M., Gritsun, T.S. & Gould, E.A. Phylogeny of TYU, SRE, and CFA virus: different evolutionary rates in the genus Flavivirus. Virology 206, 1133–1139 (1995).

  6. 6

    Zanotto, P.M., Gould, E.A., Gao, G.F., Harvey, P.H. & Holmes, E.C. Population dynamics of flaviviruses revealed by molecular phylogenetics. Proc. Natl. Acad. Sci. USA 93, 548–553 (1996).

  7. 7

    Kuno, G., Chang, G.J., Tsuchiya, K.R., Karabatsos, N. & Cropp, C.B. Phylogeny of the genus Flavivirus. J. Virol. 72, 73–83 (1998).

  8. 8

    Billoir, F. et al. Phylogeny of the genus Flavivirus using complete coding sequences of arthropod-borne viruses and viruses with no known vector. J. Gen. Virol. 81, 781–790 (2000).

  9. 9

    Gaunt, M.W. et al. Phylogenetic relationships of flaviviruses correlate with their epidemiology, disease association and biogeography. J. Gen. Virol. 82, 1867–1876 (2001).

  10. 10

    Gould, E.A., de Lamballerie, X., Zanotto, P.M.A. & Holmes, E.C. Evolution, epidemiology, and dispersal of flaviviruses revealed by molecular phylogenies. Adv. Virus Res. 57, 71–103 (2001).

  11. 11

    Gould, E.A., de Lamballerie, X., Zanotto, P.M.A & Holmes, E.C. Origins, evolution, and vector/host coadaptations within the genus Flavivirus. Adv. Virus Res. 59, 277–314 (2003).

  12. 12

    Gould, E.A., Moss, S.R. & Turner, S.L. Evolution and dispersal of encephalitic flavivruses. Arch. Virol. Suppl. 18, 65–84 (2004).

  13. 13

    Gould, E.A. Evolution of Japanese encephalitis serocomplex viruses. Curr. Top. Microbiol. Immunol. 267, 391–404 (2002).

  14. 14

    Gritsun, T.S., Lashkevich, V.A. & Gould, E.A. Tick-borne encephalitis. Antiviral Res. 57, 129–146 (2003).

  15. 15

    Porterfield, J.S. The basis of arbovirus classification. Med. Biol. 53, 400–405 (1975).

  16. 16

    Calisher, C.A. et al. Antigenic relationships between flaviviruses as determined by cross-neutralization tests with polyclonal antisera. J. Gen. Virol. 70, 37–43 (1989).

  17. 17

    Gubler, D.J. Dengue and dengue haemorrhagic fever: its history and resurgence as a global public health problem, in Dengue and Dengue Hemorrhagic Fever (eds. Gubler, D.J. & Kuno, G.) 1–22 (CAB International, London, 1997).

  18. 18

    Gubler, D.J. The global emergence/resurgence of arboviral diseases as public health problems. Arch. Med. Res. 33, 330–342 (2002).

  19. 19

    Institute of Medicine. Emerging Infections: Microbial Threats to Health in the United States (eds. Lederberg, J., Shope, R.E. & Oaks, S.C.) (National Academy Press, Washington DC, 1992).

  20. 20

    Institute of Medicine. Microbial Threats to Health in the United States: Emergence, Detection and Response (eds. Smolinski, M.S., Hamburg, M.S. & Lederberg, J.) (National Academy Press, Washington DC, 2003).

  21. 21

    Mackenzie, J.S., Barrett, A.D.T. & Deubel, V. The Japanese encephalitis serological group of Flaviviruses: a brief introduction to the group. Curr. Top. Microbio. Immunol. 267, 1–10 (2002).

  22. 22

    Solomon, T. & Vaughn, D.W. Pathogenesis and clinical features of Japanese encephalitis and West Nile virus infections. Curr. Top. Microbiol. Immunol. 267, 171–194 (2002).

  23. 23

    Burke, D.S. & Leake, C.J. Japanese encephalitis, in The Arboviruses: Epidemiology and Ecology Vol. 3 (ed. Monath, T.P.) 63–92 (CRC, Boca Raton, Florida, 1988).

  24. 24

    Solomon, T. & Winter, P.M. Neurovirulence and host factors in flavivirus encephalitis—evidence from clinical epidemiology. Arch. Virol. Suppl. 18, 161–170 (2004).

  25. 25

    Solomon, T. et al. Poliomyelitis-like illness due to Japanese encephalitis virus. Lancet 351, 1094–1097 (1998).

  26. 26

    Scherer, W.F. Ecological studies of Japanese encephalitis in Japan. Parts I–IX. Am. J. Trop. Med. Hyg. 8, 644–722 (1959).

  27. 27

    Buescher, E.L. & Scherer, W.F. Ecological studies of Japanese encephalitis virus in Japan. IX. Epidemiologic correlations and conclusions. Am. J. Trop. Med. Hyg. 8, 719–722 (1959).

  28. 28

    Innis, B.L. Japanese encephalitis, in Exotic Viral Infections (ed. Porterfield, J.S.) 147–173 (Chapman & Hall, London, 1995).

  29. 29

    Endy, T.P. & Nislak, A. Japanese encephalitis virus: ecology and epidemiology. Curr. Top. Microbiol. Immunol. 267, 11–48 (2002).

  30. 30

    Vaughn, D.W. & Hoke, C.H. The epidemiology of Japanese encephalitis: prospects for prevention. Epidemiol. Rev. 14, 197–221 (1992).

  31. 31

    Umenai, T., Krzysko, R., Bektimerov, T.A. & Assaad, F.A. Japanese encephalitis current worldwide status. Bull. WHO 63, 625–631 (1985).

  32. 32

    Igarashi, A. et al. Detection of West Nile and Japanese encephalitis viral genome sequences in cerebrospinal fluid from acute encephalitis cases in Karachi, Pakistan. Microbiol. Immunol. 38, 827–830 (1994).

  33. 33

    Prasad, S.R. et al. An epidemic of encephalitis in Haryana: serologic evidence of Japanese encephalitis in a few patients. Indian J. Pediatr. 30, 905–910 (1993).

  34. 34

    Dhanda, V. et al. Virus isolation from wild-caught mosquitoes during an encephalitis outbreak in Kerala in 1996. Indian J. Med. Res. 106, 4–6 (1997).

  35. 35

    Hanna, J.N. et al. An outbreak of Japanese encephalitis in the Torres Strait, Australia, 1995. Med. J. Aust. 165, 256–260 (1996).

  36. 36

    Ritchie, S.A. et al. Isolation of Japanese encephalitis from Culex annulirostris in Australia. Am. J. Trop. Med. Hyg. 56, 80–84 (1997).

  37. 37

    Mackenzie, J.S. et al. Emergence of Japanese encephalitis virus in the Australasian region, in Factors in the Emergence of Arbovirus Diseases (eds. Saluzzo, J.F. & Dodet, B.) 191–201 (Elsevier, Paris, 1997).

  38. 38

    Hanna, J.N. et al. Japanese encephalitis in north Queensland, 1998. Med. J. Aust. 170, 533–536 (1999).

  39. 39

    Kanamitsu, M. et al. Geographic distribution of arbovirus antibodies in indigenous human populations of the Indo-Australian archipelago. Am. J. Trop. Med. Hyg. 28, 351–363 (1979).

  40. 40

    Marshall, I.D. Murray Valley and Kunjin encephalitis, in The Arboviruses: Epidemiology and Ecology Vol. 3 (ed. Monath, T.P.) 151–189 (CRC, Boca Raton, Florida, 1988).

  41. 41

    Chen, W.R., Tesh, R.B. & Rico-Hesse, R. Genetic variation of Japanese encephalitis virus in nature. J. Gen. Virol. 71, 2915–2922 (1990).

  42. 42

    Chen, W.R., Rico-Hesse, R. & Tesh, R.B. A new genotype of Japanese encephalitis virus from Indonesia. Am. J. Trop. Med. Hyg. 47, 61–69 (1992).

  43. 43

    Ni, H. & Barrett, A.D.T. Nucleotide and deduced amino acid sequence of the structural protein genes of Japanese encephalitis viruses from different geographic locations. J. Gen. Virol. 76, 401–407 (1995).

  44. 44

    Paranjpe, S. & Banerjee, K. Phylogenetic analysis of the envelope gene of Japanese encephalitis virus. Virus Res. 42, 107–117 (1996).

  45. 45

    Williams, D.T., Wang, L.-F., Daniels, P.W. & Mackenzie, J.S. Molecular characterization of the first Australian isolate of Japanese encephalitis virus, the FU strain. J. Gen. Virol. 81, 2471–2480 (2000).

  46. 46

    Uchil, P.D. & Satchidanandam, V. Phylogenetic analysis of Japanese encephalitis virus: envelope gene based analysis reveals a fifth genotype, geographic clustering, and multiple introductions of the virus into the Indian subcontinent. Am. J. Trop. Med. Hyg. 65, 242–251 (2001).

  47. 47

    Tsuchie, H. et al. Genotypes of Japanese encephalitis virus isolated in three states in Malaysia. Am. J. Trop. Med. Hyg. 56, 153–158 (1997).

  48. 48

    Pyke, A.T. et al. The appearance of a second genotype of Japanese encephalitis virus isolated in the Australasian region. Am. J. Trop. Med. Hyg. 65, 747–753 (2001).

  49. 49

    Ma, S.-P. et al. Short report: a major genotype of Japanese encephalitis virus currently circulating in Japan. Am. J. Trop. Med. Hyg. 69, 151–154 (2003).

  50. 50

    Nga, P.T. et al. Shift in Japanese encephalitis virus (JEV) genotype circulating in northern Vietnam: implications for frequent introductions of JEV from Southeast Asia to East Asia. J. Gen. Virol. 85, 1625–1631 (2004).

  51. 51

    Yang, D.K. et al. Molecular characterisation of full-length genome of Japanese encephalitis virus (KV1899) isolated from pigs in Korea. J. Vet. Sci. 5, 197–205 (2004).

  52. 52

    Twiddy, S.S. & Holmes, E.C. The extent of homologous recombination in members of the genus Flavivirus. J. Gen. Virol. 84, 429–440 (2003).

  53. 53

    Yun, S.-I. et al. Molecular characterization of the full-length genome of the Japanese encephalitis virus strain K87P39. Virus Res. 96, 129–140 (2003).

  54. 54

    Tsai, T.F. Factors in the changing epidemiology of Japanese encephalitis and West Nile fever. in Factors in the Emergence of Arbovirus Diseases (eds. Saluzzo, J.F. & Dodet, B.) 179–189 (Elsevier, Paris, 1997).

  55. 55

    Mackenzie, J.S. et al. Japanese encephalitis as an emerging virus: the emergence and spread of Japanese encephalitis virus in Australasia. Curr. Top. Microbiol. Immunol. 267, 49–73 (2002).

  56. 56

    Ritchie, S.A. & Rochester, W. Wind-blown mosquitoes and introduction of Japanese encephalitis into Australia. Emerg. Infect. Dis. 7, 900–903 (2001).

  57. 57

    Mackenzie, J.S., Lindsay, M.D. & Daniels, P.W. The effect of climate on the incidence of vector-borne viral diseases: the potential value of seasonal forecasting, in Applications of Seasonal Climate Forecasting in Agriculture and Natural Ecosystems—The Australian Experience (eds. Hammer, G., Nicholls, N. & Mitchell, C.) 429–452 (Kluwer Academic Publishers, The Netherlands, 2000).

  58. 58

    Min, J.-G. & Mei, X. Progress in studies on the overwintering of the mosquito Culex tritaeniorhynchus. Southeast Asian J. Trop. Med. Publ. Hlth. 27, 810–817 (1996).

  59. 59

    Ming, J.-G. et al. Autumn southward 'return' migration of the mosquito Culex tritaeniorhynchus in China. Med. Vet. Entomol. 7, 323–327 (1993).

  60. 60

    Asahina, S. & Noguchi, K. Long distance flight of Culex tritaeniorynchus. Jpn. J. Sanit. Zool. 19, 110–112 (1968).

  61. 61

    Innis, B.L. Japanese encephalitis, in Exotic Viral Infections (ed. Porterfield, J.S.) 147–174 (Chapman & Hall, London, 1995).

  62. 62

    Solomon, T. et al. Origin and evolution of Japanese encephalitis virus in Southeast Asia. J. Virol. 77, 3091–3098 (2003).

  63. 63

    Monath, T.P. Japanese encephalitis vaccines: current vaccines and future prospects. Curr. Top. Microbiol. Immunol. 267, 105–138 (2002).

  64. 64

    Chang, G.J., Kuno, G., Purdy, D.E. & Davis, B.S. Recent advancement in flavivirus vaccine development. Expert Rev. Vaccines 3, 199–220 (2004).

  65. 65

    Bistra, M.B. et al. Efficacy of a single-dose SA14–14–2 vaccine against Japanese encephalitis: a case control study. Lancet 358, 791–795 (2001).

  66. 66

    Monath, T.P. et al. Clinical proof of principle for ChimeriVax: recombinant live, attenuated vaccines against flavivirus infections. Vaccine 20, 1004–1018 (2002).

  67. 67

    Beasley, D.W.C. et al. Protection against Japanese encephalitis virus strains representing four genotypes by passive transfer of sera raised against ChimeriVax-JE experimental vaccine. Vaccine 22, 3722–3726 (2004).

  68. 68

    Smithburn, K.C., Hughes, T.P., Burke, A.W. & Paul, J.H. A neurotropic virus isolated from the blood of a native of Uganda. Am. J. Trop. Med. 20, 471–492 (1940).

  69. 69

    Petersen, L.R. & Roehrig, J.T. West Nile virus: a reemerging global pathogen. Emerg. Infect. Dis. 7, 611–614 (2001).

  70. 70

    Murgue, B., Zeller, H. & Deubel, V. The ecology and epidemiology of West Nile virus in Africa, Europe and Asia. Curr. Top. Microbiol. Immunol. 267, 196–221 (2002).

  71. 71

    Hall, R.A., Broom, A.K., Smith, D.W. & Mackenzie, J.S. The ecology and epidemiology of Kunjin virus. Curr. Top. Microbiol. Immunol. 267, 253–269 (2002).

  72. 72

    Jia, X.Y. et al. Genetic analysis of the West Nile New York 1999 encephalitis virus. Lancet 354, 1971–1972 (1999).

  73. 73

    Lanciotti, R.S. et al. Origin of the West Nile virus responsible for an outbreak of encephalitis in the northeastern US. Science 286, 2333–2337 (1999).

  74. 74

    Lanciotti, R.S. et al. Complete genome sequences and phylogenetic analysis of West Nile virus strains isolated from the United States, Europe, and the Middle East. Virology 298, 96–105 (2002).

  75. 75

    Berthet, F.X. et al. Extensive nucleotide changes and deletions within the envelope glycoprotein gene of Euro-African West Nile viruses. J. Gen. Virol. 78, 2293–2297 (1997).

  76. 76

    Scherret, J.H., Mackenzie, J.S., Hall, R.A., Deubel, V. & Gould, E.A. Phylogeny and molecular epidemiology of West Nile and Kunjin viruses. Curr. Top. Microbiol. Immunol. 267, 373–390 (2002).

  77. 77

    Burt, F.J. et al. Phylogenetic relationships of southern African West Nile virus isolates. Emerg. Infect. Dis. 8, 820–826 (2002).

  78. 78

    Lvov, D.K. et al. West Nile virus and other zoonotic viruses in Russia: examples of emerging and reemerging situations. Arch. Virol. Suppl. 18, 85–96 (2004).

  79. 79

    Charrel, R.N. et al. Evolutionary relationship between Old World West Nile virus strains. Evidence for viral gene flow between Africa, the Middle East, and Europe. Virology 315, 381–388 (2003).

  80. 80

    Beasley, D.W. et al. Mouse neuroinvasive phenotype of West Nile virus strains varies depending upon virus genotype. Virology 296, 17–23 (2002).

  81. 81

    Komar, N. et al. Experimental infection of North American birds with the New York 1999 strain of West Nile virus. Emerg. Infect. Dis. 9, 311–322 (2003).

  82. 82

    Malkinson, M. & Banet, C. The role of birds in the ecology of West Nile virus in Europe and Africa. Curr. Top. Microbiol. Immunol. 267, 309–322 (2002).

  83. 83

    McLean, R.G., Ubico, S.R., Bourne, D. & Komar, N. West Nile virus in livestock and wildlife. Curr. Top. Microbiol. Immunol. 267, 272–308 (2002).

  84. 84

    Rappole, J.H. et al. Migratory birds and West Nile virus. J. Appl. Microbiol. 94, 47S–58S (2003).

  85. 85

    Solomon, T. Flavivirus encephalitis. N. Engl. J. Med. 351, 370–378 (2004).

  86. 86

    Hubalek, Z. & Halouzka, J. West Nile fever—a reemerging mosquito-borne viral disease in Europe. Emerg. Infect. Dis. 5, 643–650 (1999).

  87. 87

    Lillibridge, K.M. et al. The 2002 introduction of West Nile virus into Harris County, Texas, an area historically endemic for St. Louis encephalitis. Am. J. Trop. Med. Hyg. 70, 676–681 (2004).

  88. 88

    Iwamoto, M. et al. Transmission of West Nile virus from an organ donor to four transplant recipients. N. Engl. J. Med. 348, 2196–2203 (2003).

  89. 89

    Pealer, L.N. et al. Transmission of West Nile virus through blood transfusion in the United States in 2002. N. Engl. J. Med. 349, 1236–1245 (2003).

  90. 90

    Intrauterine West Nile virus infection—New York, 2002. MMWR Morb. Mortal. Wkly. Rep. 51, 1135–1136 (2002).

  91. 91

    Possible West Nile virus transmission to an infant through breast-feeding—Michigan, 2002. MMWR Morb. Mortal. Wkly. Rep. 51, 877–878 (2002).

  92. 92

    West Nile virus infection among turkey breeder farm workers—Wisconsin, 2002. MMWR Morb. Mortal. Wkly. Rep. 52, 1017–1019 (2003).

  93. 93

    Possible dialysis-related West Nile virus transmission—Georgia, 2003. MMWR Morb. Mortal. Wkly. Rep, 53, 738–739 (2004).

  94. 94

    Petersen, L.R. & Marfin, A.A. West Nile virus: a primer for the clinician. Ann. Intern. Med. 137, 173–179 (2002).

  95. 95

    Watson, J.T. et al. Clinical characteristics and functional outcomes of West Nile fever. Ann. Intern. Med. 141, 360–365 (2004).

  96. 96

    Sejvar, J.J. et al. Neurologic manifestations and outcome of West Nile virus infection. J. Am. Med. Assoc. 290, 511–515 (2003).

  97. 97

    O'Leary, D.R. et al. The epidemic of West Nile virus in the United States, 2002. Vector Borne Zoonotic Dis. 4, 61–70 (2004).

  98. 98

    Sejvar, J.J. et al. Acute flaccid paralysis and West Nile virus infection. Emerg. Infect. Dis. 9, 788–793 (2003).

  99. 99

    Guarner, J. et al. Clinicopathologic study and laboratory diagnosis of 23 cases with West Nile virus encephalomyelitis. Hum. Pathol. 35, 983–990 (2004).

  100. 100

    Southam, C.M. & Moore, A.E. Induced virus infections in man by the Egypt isolates of West Nile virus. Am. J. Trop. Med. Hyg. 3, 19–50 (1954).

  101. 101

    Kleinschmidt-DeMasters, B.K. et al. Naturally acquired West Nile virus encephalomyelitis in transplant recipients: clinical, laboratory, diagnostic, and neuropathological features. Arch. Neurol. 61, 1210–1220 (2004).

  102. 102

    Perelygin, A.A. et al. Positional cloning of the murine flavivirus resistance gene. Proc. Natl. Acad. Sci. USA 99, 9322–9327 (2002).

  103. 103

    Diamond, M.S. et al. B cells and antibody play critical roles in the immediate defense of disseminated infection by West Nile encephalitis virus. J. Virol. 77, 2578–2586 (2003).

  104. 104

    Wang, T. et al. IFN-γ-producing γδ T cells help control murine West Nile virus infection. J. Immunol. 171, 2524–2531 (2003).

  105. 105

    Shrestha, B. & Diamond, M.S. Role of CD8+ T cells in control of West Nile virus infection. J. Virol. 78, 8312–8321 (2004).

  106. 106

    Gea-Banacloche, J. et al. West Nile virus: pathogenesis and therapeutic options. Ann. Intern. Med. 140, 545–553 (2004).

  107. 107

    Solomon, T. et al. Interferon α-2a in Japanese encephalitis: a randomised double-blind placebo-controlled trial. Lancet 361, 821–826 (2003).

  108. 108

    Granwehr, B.P. et al. West Nile virus: where are we now? Lancet Infect. Dis. 4, 547–556 (2004).

  109. 109

    Kimura, R. & Hotta, S. On the inoculation of dengue virus into mice. (In Japanese). Nippon Igaku 3379, 629–633 (1944).

  110. 110

    Sabin, A.B. Research on dengue during World War II. Am. J. Trop. Med. Hyg. 1, 30–50 (1952).

  111. 111

    Hammon, W.M. et al. New hemorrhagic fevers of children in the Philippines and Thailand. Trans. Assoc. Am. Physicians 73, 140–155 (1960).

  112. 112

    Twiddy, S.S., Holmes, E.C. & Rambaut, A. Inferring the rate and time-scale of dengue virus evolution. Mol. Biol. Evol. 20, 122–129 (2003).

  113. 113

    Holmes, E.C. & Twiddy, S.S. The origin, emergence and evolutionary genetics of dengue virus. Inf. Genetics Evol. 3, 19–28 (2003).

  114. 114

    Rico-Hesse, R. Molecular evolution and distribution of dengue viruses type 1 and 2 in nature. Virology 174, 479–493 (1990).

  115. 115

    Lewis, J.A. et al. Phylogenetic relationships of dengue-2 viruses. Virology 197, 216–224 (1993).

  116. 116

    Rosen, L. The emperor's new clothes revisited, a reflection on the pathogenesis of dengue hemorrhagic fever. Am. J. Trop. Med. Hyg. 26, 337–343 (1997).

  117. 117

    Gubler, D.J., Reed, D., Rosen, L. & Hitchcock, J.D., Jr. Epidemiologic, clinical, and virologic observations on dengue in the Kingdom of Tonga. Am. J. Trop. Med. Hyg. 27, 581–589 (1978).

  118. 118

    Lanciotti, R.S., Lewis, J.G., Gubler, D.J. & Trent, D.W. Molecular evolution and epidemiology of dengue-3 viruses. J. Gen. Virol. 75, 65–75 (1994).

  119. 119

    Rico-Hesse, R. et al. Origins of dengue type 2 viruses associated with increased pathogenicity in the Americas. Virology 230, 244–251 (1997).

  120. 120

    Leitmeyer, K.C. et al. Dengue virus structural differences that correlate with pathogenesis. J. Virol. 73, 4738–4747 (1999).

  121. 121

    Messer, W.B. et al. Emergence and global spread of a dengue serotype 3, subtype III virus. Emerg. Infect. Dis. 9, 800–809 (2003).

  122. 122

    Gubler, D.J. et al. Virological surveillance for dengue haemorrhagic fever in Indonesia using the mosquito inoculation technique. Bull. WHO 57, 931–936 (1979).

  123. 123

    Bennett, S.N. et al. Selection-driven evolution of emergent dengue virus. Mol. Biol. Evol. 10, 1650–1658 (2003).

  124. 124

    Holmes, E.C., Worobey, M. & Rambaut, A. Phylogenetic evidence for recombination in dengue virus. Mol. Biol. Evol. 16, 405–409 (1999).

  125. 125

    Tolou, H. et al. Evidence for recombination in natural populations of dengue virus type 1 based on the analysis of complete genome sequences. J. Gen. Virol. 82, 1283–1290 (2001).

  126. 126

    Uzcategui, N.Y. et al. The molecular epidemiology of dengue type 2 virus in Venezuela: evidence for in situ virus evolution and recombination. J. Gen. Virol. 82, 2945–2953 (2001).

  127. 127

    Holmes, E.C. & Burch, S.S. The causes and consequences of genetic variation in dengue virus. Trends Microbiol. 8, 74–77 (2000).

  128. 128

    Gubler, D.J. Dengue and dengue hemorrhagic fever. Clin. Microbiol. Rev. 11, 480–496 (1998).

  129. 129

    Gubler, D.J. Epidemic dengue/dengue hemorrhagic fever as a public health, social and economic problem in the 21st century. Trends Microbiol. 10, 100–103 (2002).

  130. 130

    World Health Organization. Dengue Haemorrhagic Fever, Diagnosis, Treatment, Prevention and Control Edn. 2 (World Health Organization, Geneva, 1997).

  131. 131

    Kurane, I. & Ennis, F.A. Immunopathogenesis of dengue virus infections, in Dengue and Dengue Hemorrhagic Fever (eds. Gubler, D.J. & Kuno, G.) 273–290 (CAB International, London, 1997)

  132. 132

    Innis, B.L. Dengue and dengue hemorrhagic fever, in Exotic Viral Infections (ed. Porterfield, J.S.) 103–145 (Chapman & Hall, London, 1995).

  133. 133

    Kuno, G. Serodiagnosis of flaviviral infections and vaccinations in humans. Adv. Virus Res. 61, 3–65 (2004).

  134. 134

    Halstead, S.B., Rojanasuphot, S. & Sangkawibha, N. Original antigenic sin in dengue. Am. J. Trop. Med. Hyg. 32, 154–156 (1983).

  135. 135

    Guzman, M.G. & Kouri, G. Dengue diagnosis, advances and challenges. Int. J. Infect. Dis. 8, 69–80 (2004).

  136. 136

    Halstead, S.B. The XXth century dengue pandemic: need for surveillance and research. Rapp. Trimest. Stat. Sanit. Mond. 45, 292–298 (1992).

  137. 137

    Gubler, D.J. & Clark, G.G. Dengue/dengue hemorrhagic fever: the emergence of a global health problem. Emerg. Infect. Dis. 1, 55–57 (1995).

  138. 138

    World Health Organization. Strengthening implementation of the global strategy for dengue fever/dengue haemorrhagic fever prevention and control. Report of the Informal Consultation, 18–20 October 1999 (World Health Organization, Geneva, 2000).

  139. 139

    Gubler, D.J. Aedes aegypti and Aedes aegypti-borne disease control in the 1990s: top down or bottom up. Am. J. Trop. Med. Hyg. 40, 571–578 (1989).

  140. 140

    Kinney, R.M. & Huang, C.Y.H. Development of new vaccines against dengue fever and Japanese encephalitis. Intervirology 44, 176–197 (2001).

  141. 141

    Halstead, S.B. & Deen, J. The future of dengue vaccines. Lancet 360, 1243–1245 (2002).

  142. 142

    Bhamarapravati, N. & Yoksan, S. Live attenuated tetravalent dengue vaccine. Vaccine 18 Suppl. 2, 44–47 (2000).

  143. 143

    Sun, W. et al. Vaccination of human volunteers with monovalent and tetravalent live-attenuated dengue vaccine candidates. Am. J. Trop. Med. Hyg. 69 Suppl. 6, 24–31 (2003).

  144. 144

    Whitehead, S.S. et al. A live attenuated dengue virus type 1 vaccine candidate with a 30-nucleotide deletion in the 3′untranslated region is highly attenuated and immunogenetic in monkeys. J. Virol. 77, 1653–1657 (2003).

  145. 145

    Guirakhoo, F. et al. Construction, safety and immunogenicity in nonhuman primates of a chimeric yellow fever–dengue virus tetravalent vaccine. J. Virol. 75, 7290–7304 (2001).

  146. 146

    Huang, C.Y.H. et al. Chimeric dengue type 2 (vaccine strain PDK-53)/Dengue type 1 virus as a potential candidate Dengue type 1 virus vaccine. J. Virol. 74, 3020–3028 (2000).

  147. 147

    Whitehead, S.S. et al. Substitution of the structural genes of dengue virus type 4 with those of type 2 results in chimeric vaccine candidates which are attenuated for mosquitoes, mice and rhesus monkeys. Vaccine 21, 4307–4316 (2003).

  148. 148

    Konishi, E., Yamaoka, M., Kurane, I. & Mason, P.W. A DNA vaccine expressing dengue type 2 premembrane and envelope genes induces neutralizing antibody and memory B cells in mice. Vaccine 18, 1133–1139 (2000).

  149. 149

    Men, R. et al. Immunization of rhesus monkeys with a recombinant of modified vaccine virus Ankara expressing a truncated envelope glycoprotein of dengue type 2 virus induced resistance to dengue type 2 virus challenge. Vaccine 18, 3113–3122 (2000).

  150. 150

    Accelerating the Development and Introduction of a Dengue Vaccine for Poor Children. Hosted by: Children's Hospital No. 1 and Pasteur Institute of Ho Chi Minh City, December 5–8, 2001 (Ho Chi Minh City, Vietnam, 2001).

  151. 151

    Lounibos, L.P. Invasions by insect vectors of human disease. Annu. Rev. Entomol. 47, 233–266 (2002).

  152. 152

    van den Hurk, A.F. et al. Japanese encephalitis on Badu Island, Australia: the first isolation of Japanese encephalitis virus from Culex gelidus in the Australasian region and the role of mosquito host feeding patterns in virus transmission cycles. Trans. R. Soc. Trop. Med. Hyg. 95, 595–600 (2001).

  153. 153

    Mackenzie, J.S. & Broom, A.K. Old river irrigation area: the effect of dam construction and irrigation on the incidence of Murray Valley encephalitis virus, in Water Resources—Health, Environment and Development (ed. Kay, B.H.) 108–122 (Spon, London, 1998).

  154. 154

    Weissenbock, H. et al. Emergence of Usutu virus, an African mosquito-borne flavivirus of the Japanese encephalitis virus group, central Europe. Emerg. Infect. Dis. 8, 652–656 (2002).

  155. 155

    Weissenbock, H. et al. Usutu virus activity in Austria, 2001–2002. Microbes Infect. 5, 1132–1136 (2003).

  156. 156

    Buckley, A. et al. Serological evidence of West Nile virus, Usutu virus and Sindbis virus infection of birds in the UK. J. Gen. Virol. 84, 2807–2817 (2003).

  157. 157

    Robertson, S.E. et al. Yellow fever. A decade of reemergence. J. Am. Med. Assoc. 276, 1157–1162 (1996).

  158. 158

    Sanders, E.J. et al. First recorded outbreak of yellow fever in Kenya, 1992–1993. I. Epidemiologic investigations. Am. J. Trop. Med. Hyg. 59, 644–649 (1998).

  159. 159

    Monath, T.P. Yellow fever: an update. Lancet Infect. Dis. 1, 11–20 (2001).

  160. 160

    Monath, T.P. Yellow fever, in The Arboviruses: Epidemiology and Ecology Vol. 5 (ed. Monath, T.P.) 139–231 (CRC Press, Boca Raton, 1989).

Download references

Author information

Correspondence to John S Mackenzie.

Ethics declarations

Competing interests

John Mackenzie is on the Board of Directors of a diagnostics company, PANBIO, and holds about 10,000 shares worth approximately Aust. $3,000 (US $2,000).

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Mackenzie, J., Gubler, D. & Petersen, L. Emerging flaviviruses: the spread and resurgence of Japanese encephalitis, West Nile and dengue viruses. Nat Med 10, S98–S109 (2004) doi:10.1038/nm1144

Download citation

Further reading