Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Modeling epidemics of multidrug-resistant M. tuberculosis of heterogeneous fitness

Abstract

Mathematical models have recently been used to predict the future burden of multidrug-resistant tuberculosis (MDRTB)1,2,3. These models suggest the threat of multidrug resistance to TB control will depend on the relative 'fitness' of MDR strains and imply that if the average fitness of MDR strains is considerably less than that of drug-sensitive strains, the emergence of resistance will not jeopardize the success of tuberculosis control efforts. Multidrug resistance in M. tuberculosis is conferred by the sequential acquisition of a number of different single-locus mutations that have been shown to have heterogeneous phenotypic effects. Here we model the impact of initial fitness estimates on the emergence of MDRTB assuming that the relative fitness of MDR strains is heterogeneous. We find that even when the average relative fitness of MDR strains is low and a well-functioning control program is in place, a small subpopulation of a relatively fit MDR strain may eventually outcompete both the drug-sensitive strains and the less fit MDR strains. These results imply that current epidemiological measures and short-term trends in the burden of MDRTB do not provide evidence that MDRTB strains can be contained in the absence of specific efforts to limit transmission from those with MDR disease.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Multistrain tuberculosis model structure.
Figure 2: Sensitivity of long-term projections of MDRTB epidemics to the relative fitness of MDR strains.

References

  1. 1

    Blower, S.M. & Gerberding, J.L. Understanding, predicting and controlling the emergence of drug- resistant tuberculosis: a theoretical framework. J. Mol. Med. 76, 624–636 (1998).

    CAS  Article  Google Scholar 

  2. 2

    Dye, C. & Williams, B.G. Criteria for the control of drug-resistant tuberculosis. Proc. Natl. Acad. Sci. USA 97, 8180–8185 (2000).

    CAS  Article  Google Scholar 

  3. 3

    Dye, C. & Espinal, M.A. Will tuberculosis become resistant to all antibiotics? Proc. R. Soc. Lond. B. Biol. Sci. 268, 45–52 (2001).

    CAS  Article  Google Scholar 

  4. 4

    World Health Organization. Anti-tuberculosis drug resistance in the world, report #3 (WHO, Geneva, 2004).

  5. 5

    Andersson, D.I. & Levin, B.R. The biological cost of antibiotic resistance. Curr. Opin. Microbiol. 2, 489–493 (1999).

    CAS  Article  Google Scholar 

  6. 6

    Anderson, R.M. & May, R.M. Infectious Diseases of Humans: Dynamics and Control. (Oxford University Press, Oxford, 1991).

    Google Scholar 

  7. 7

    Grenfell, B.T. & Anderson, R.M. Pertussis in England and Wales: an investigation of transmission dynamics and control by mass vaccination. Proc. R. Soc. Lond. B Biol. Sci. 22, 213–252 (1989).

    Article  Google Scholar 

  8. 8

    Blower, S.M., Small, P.M. & Hopewell, P.C. Control strategies for tuberculosis epidemics: new models for old problems. Science 273, 497–500 (1996).

    CAS  Article  Google Scholar 

  9. 9

    Blower, S.M. et al. The intrinsic transmission dynamics of tuberculosis epidemics. Nat. Med. 1, 815–821 (1995).

    CAS  Article  Google Scholar 

  10. 10

    Vynnycky, E. & Fine, P.E. The natural history of tuberculosis: the implications of age-dependent risks of disease and the role of reinfection. Epidemiol. Infect. 119, 183–201 (1997).

    CAS  Article  Google Scholar 

  11. 11

    Dye, C., Garnett, G.P., Sleeman, K. & Williams, B.G. Prospects for worldwide tuberculosis control under the WHO DOTS strategy: Directly observed short-course therapy. Lancet 352, 1886–1891 (1998).

    CAS  Article  Google Scholar 

  12. 12

    Castillo-Chavez, C. & Feng, Z. To treat or not to treat: the case of tuberculosis. J. Math. Biol. 35, 629–656 (1997).

    CAS  Article  Google Scholar 

  13. 13

    Schrag, S.J., Perrot, V. & Levin, B.R. Adaptation to the fitness costs of antibiotic resistance in Escherichia coli. Proc. R. Soc. Lond. B Biol. Sci. 264, 1287–1291 (1997).

    CAS  Article  Google Scholar 

  14. 14

    Lipsitch, M. & Levin, B.R. The population dynamics of antimicrobial chemotherapy. Antimicrob. Agents Chemother. 41, 363–373 (1997).

    CAS  Article  Google Scholar 

  15. 15

    Ordway, D.J., Sonnenberg, M.G., Donahue, S.A., Belisle, J.T. & Orme, I.M. Drug-resistant strains of Mycobacterium tuberculosis exhibit a range of virulence for mice. Infect. Immun. 63, 741–743 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. 16

    Sherman, D.R. et al. Compensatory ahpC gene expression in isoniazid-resistant Mycobacterium tuberculosis. Science 272, 1641–1643 (1996).

    CAS  Article  Google Scholar 

  17. 17

    Garcia-Garcia, M.L. et al. Clinical consequences and transmissibility of drug-resistant tuberculosis in southern Mexico. Arch. Intern. Med. 160, 630–636 (2000).

    CAS  Article  Google Scholar 

  18. 18

    Teixeira, L. et al. Infection and disease among household contacts of patients with multidrug-resistant tuberculosis. Int. J. Tuberc. Lung Dis. 5, 321–328 (2001).

    CAS  PubMed  Google Scholar 

  19. 19

    Cohen, T., Sommers, B. & Murray, M. The effect of drug resistance on the fitness of Mycobacterium tuberculosis. Lancet Infect. Dis. 3, 13–21 (2003).

    Article  Google Scholar 

  20. 20

    Khatri, G.R. & Frieden, T.R. Controlling tuberculosis in India. N. Engl. J. Med. 347, 1420–1425 (2002).

    CAS  Article  Google Scholar 

  21. 21

    World Health Organization. Treatment of tuberculosis. Guidelines for national programmes. WHO report (WHO/CDS/TB/97.220, Geneva, 1997).

  22. 22

    Espinal, M.A. et al. Standard short-course chemotherapy for drug-resistant tuberculosis: treatment outcomes in 6 countries. JAMA 283, 2537–2545 (2000).

    CAS  Article  Google Scholar 

  23. 23

    Styblo, K. Epidemiology of Tuberculosis: Selected Papers (Royal Netherlands Tuberculosis Association, The Hague, 1991).

    Google Scholar 

  24. 24

    Dye, C., Scheele, S., Dolin, P., Pathania, V. & Raviglione, M.C. Consensus statement. Global burden of tuberculosis: estimated incidence, prevalence, and mortality by country. WHO Global Surveillance and Monitoring Project. JAMA 282, 677–686 (1999).

    CAS  Article  Google Scholar 

  25. 25

    Espinal, M.A. et al. Global trends in resistance to antituberculosis drugs. World Health Organization-International Union against Tuberculosis and Lung Disease Working Group on Anti-Tuberculosis Drug Resistance Surveillance. N. Engl. J. Med. 344, 1294–1303 (2001).

    CAS  Article  Google Scholar 

  26. 26

    Verver, S. et al. Transmission of tuberculosis in a high incidence urban community in South Africa. Int. J. Epidemiol. 33, 351–357 (2004).

    Article  Google Scholar 

  27. 27

    Small, P.M. et al. The epidemiology of tuberculosis in San Francisco: A population-based study using conventional and molecular methods. N. Engl. J. Med. 330, 1703–1709 (1994).

    CAS  Article  Google Scholar 

  28. 28

    Murray, C.J. & Salomon, J.A. Modeling the impact of global tuberculosis control strategies. Proc. Natl. Acad. Sci. USA 95, 13881–13886 (1998).

    CAS  Article  Google Scholar 

  29. 29

    Farmer, P. & Kim, J.Y. Community based approaches to the control of multidrug resistant tuberculosis: introducing “DOTS-plus”. BMJ 317, 671–674 (1998).

    CAS  Article  Google Scholar 

  30. 30

    van Rie, A. et al. Exogenous reinfection as a cause of recurrent tuberculosis after curative treatment. N. Engl. J. Med. 341, 1174–1179 (1999).

    CAS  Article  Google Scholar 

Download references

Acknowledgements

We thank M. Lipsitch, B. Cooper, M. Becerra and M. Smurzynski for critical reviews of a draft of this manuscript.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Megan Murray.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Cohen, T., Murray, M. Modeling epidemics of multidrug-resistant M. tuberculosis of heterogeneous fitness. Nat Med 10, 1117–1121 (2004). https://doi.org/10.1038/nm1110

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing