Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The macrophage foam cell as a target for therapeutic intervention

Specialized functions of macrophages have evolved to protect the body from infection. However, the same mechanisms that enable phagocytosis of pathogens and activation of leukocytes also permit the uptake of lipoproteins and release of reactive oxygen species and immune mediators that collectively contribute to atherosclerosis. New approaches to inhibit lipid accumulation in macrophage foam cells and reduce inflammatory responses may be of therapeutic value in preventing coronary artery disease.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Photomicrograph of a macrophage foam cell isolated from a hypercholesterolemic mouse.
Figure 2: Mechanisms contributing to the recruitment of monocytes to the artery wall and their differentiation into macrophages.

D. Maizels

Figure 3: Mechanisms contributing to foam-cell formation.

D. Maizels

Figure 4: Mechanisms that act to protect cells from toxic effects of free cholesterol.

D. Maizels

Figure 5: Interactions of macrophages with Th1 and Th2 cells that influence the development of atherosclerosis.

D. Maizels

References

  1. Akira, S., Takeda, K. & Kaisho, T. Toll-like receptors: Critical proteins linking innate and acquired immunity. Nature Immunol. 2, 675–680 (2001).

    Article  CAS  Google Scholar 

  2. Gough, P.J. & Gordon, S. The role of scavenger receptors in the innate immune system. Microbes Infect. 2, 305–311 (2000).

    Article  CAS  PubMed  Google Scholar 

  3. Gordon, S., Clarke, S., Greaves, D. & Doyle, A. Molecular immunobiology of macrophages: recent progress. Curr. Opin. Immunol. 7, 24–33 (1995).

    Article  CAS  PubMed  Google Scholar 

  4. Libby, P., Ridker, P.M. & Maseri, A. Inflammation and atherosclerosis. Circulation 105, 1135–1143 (2002).

    Article  CAS  PubMed  Google Scholar 

  5. Glass, C. & Witztum, J. Atherosclerosis. the road ahead. Cell 104, 503–516 (2001).

    Article  CAS  PubMed  Google Scholar 

  6. Ross, R. Atherosclerosis—an inflammatory disease. N. Engl. J. Med 340, 115–126 (1999).

    Article  CAS  PubMed  Google Scholar 

  7. Smith, J.D. et al. Decreased atherosclerosis in mice deficient in both macrophage colony-stimulting factor (op) and apolipoprotein E. Proc. Natl. Acad. Sci. USA 92, 8264–8268 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Linton, M.F. & Fazio, S. Class A scavenger receptors, macrophages, and atherosclerosis. Curr. Opin. Lipidol. 12, 489–495 (2001).

    Article  CAS  PubMed  Google Scholar 

  9. de Villiers, W.J. & Smart, E.J. Macrophage scavenger receptors and foam cell formation. J. Leukoc. Biol. 66, 740–746 (1999).

    Article  CAS  PubMed  Google Scholar 

  10. Hansson, G.K. Immune mechanisms in atherosclerosis. Arterioscler. Thromb. Vasc. Biol. 21, 1876–1890 (2001).

    Article  CAS  PubMed  Google Scholar 

  11. Glagov, S., Weisenberg, E., Zarins, C.K., Stankunavicius, R. & Kolettis, G.J. Compensatory enlargement of human atherosclerotic coronary arteries. N. Engl. J. Med. 316, 1371–1375 (1987).

    Article  CAS  PubMed  Google Scholar 

  12. Davies, M.J., Richardson, P.D. & Woolf, N. Risk of thrombosis in human atherosclerotic plaques: role of extracellular lipid, macrophage, and smooth muscle cell content. Br. Heart J. 69, 377–381 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Dansky, H.M. et al. Adhesion of monocytes to arterial endothelium and initiation of atherosclerosis are critically dependent on vascular cell adhesion molecule-1 gene dosage. Arterioscler. Thromb. Vasc. Biol. 21, 1662–1667 (2001).

    Article  CAS  PubMed  Google Scholar 

  14. Cybulsky, M.I. & Gimbrone, M.A., Jr. Endothelial expression of a mononuclear leukocyte adhesion molecule during atherogenesis. Science 251, 788–791 (1991).

    Article  CAS  PubMed  Google Scholar 

  15. Cybulsky, M.I. et al. A major role for VCAM-1, but not ICAM-1, in early atherosclerosis. J. Clin. Invest. 107, 1255–1262 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Collins, R.G. et al. P-selectin or intercellular adhesion molecule (ICAM)-1 deficiency substantially protects against atherosclerosis in apolipoprotein E-deficient mice. J. Exp. Med. 191, 189–194 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Boring, L., Gosling, J., Cleary, M. & Charo, I.F. Decreased lesion formation in CCR2−/− mice reveals a role for chemokines in the initiation of atherosclerosis. Nature 394, 894–897 (1998).

    Article  CAS  PubMed  Google Scholar 

  18. Gu, L. et al. Absence of monocyte chemoattractant protein-1 reduces atherosclerosis in low density lipoprotein-deficient mice. Mol. Cell 2, 275–281 (1998).

    Article  CAS  PubMed  Google Scholar 

  19. Gosling, J. et al. MCP-1 deficiency reduces susceptibility to atherosclerosis in mice that overexpress human apolipoprotein B. J. Clin. Invest. 103, 773–778 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Han, K.H., Han, K.O., Green, S.R. & Quehenberger, O. Expression of the monocyte chemoattractant protein-1 receptor CCR2 is increased in hypercholesterolemia. Differential effects of plasma lipoproteins on monocyte function. J. Lipid Res. 40, 1053–1063 (1999).

    CAS  PubMed  Google Scholar 

  21. Boisvert, W., Santiago, R., Curtiss, L. & Terkeltaub, R. A leukocyte homologue of the IL-8 receptor CXCR-2 mediates the accumulation of macrophages in atherosclerotic lesions of LDL receptor-deficient mice. J. Clin. Invest. 101, 353–363 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Cushing, S.D. et al. Minimally modified low density lipoprotein induces monocyte chemotactic protein 1 in human endothelial cells and smooth muscle cells. Proc. Natl. Acad. Sci. USA 87, 5134–5130 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Subbanagounder, G. et al. Epoxyisoprostane and epoxycyclopentenone phospholipids regulate monocyte chemotactic protein-1 and interleukin-8 synthesis. Formation of these oxidized phospholipids in response to interleukin-1β. J. Biol. Chem. 277, 7271–7281 (2002).

    Article  CAS  PubMed  Google Scholar 

  24. Ni, W. et al. New anti-monocyte chemoattractant protein-1 gene therapy attenuates atherosclerosis in apolipoprotein E-knockout mice. Circulation 103, 2096–2101 (2001).

    Article  CAS  PubMed  Google Scholar 

  25. Skalen, K. et al. Subendothelial retention of atherogenic lipoproteins in early atherosclerosis. Nature 417, 750–754 (2002).

    Article  CAS  PubMed  Google Scholar 

  26. Steinberg, D. & Witztum, J.L. Lipoproteins, Lipoprotein, Oxidation, and Atherogenesis 458–475 (W.B. Saunders Co., Philadelphia, 1999).

    Google Scholar 

  27. Gaut, J.P. & Heinecke, J.W. Mechanisms for oxidizing low-density lipoprotein. Insights from patterns of oxidation products in the artery wall and from mouse models of atherosclerosis. Trends Cardiovasc. Med. 11, 103–112 (2001).

    Article  CAS  PubMed  Google Scholar 

  28. Babior, B.M. Phagocytes and oxidative stress. Am. J. Med. 109, 33–44 (2000).

    Article  CAS  PubMed  Google Scholar 

  29. Mehrabian, M. et al. Identification of 5-lipoxygenase as a major gene contributing to atherosclerosis susceptibility in mice. Circ. Res. 91, 120–126 (2002).

    Article  CAS  PubMed  Google Scholar 

  30. Cyrus, T. et al. Disruption of the 12/15-lipoxygenase gene diminishes atherosclerosis in apo E-deficient mice. J. Clin. Invest. 103, 1597–1604 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Harats, D. et al. Overexpression of 15-lipoxygenase in vascular endothelium accelerates early atherosclerosis in LDL receptor-deficient mice. Arteriosler. Thromb. Vasc. Biol. 20, 2100–2105 (2000).

    Article  CAS  Google Scholar 

  32. Sendobry, S.M. et al. Attenuation of diet-induced atherosclerosis in rabbits with a highly selective 15-lipoxygenase inhibitor lacking significant antioxidant properties. Br. J. Pharmacol. 120, 1199–1206 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Bocan, T.M. et al. A specific 15-lipoxygenase inhibitor limits the progression and monocyte-macrophage enrichment of hypercholesterolemia-induced atherosclerosis in the rabbit. Atherosclerosis 136, 203–216 (1998).

    Article  CAS  PubMed  Google Scholar 

  34. Shen, J. et al. Macrophage-mediated 15-lipoxygenase expression protects against atherosclerosis development. J. Clin. Invest. 98, 2201–2208 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Detmers, P.A. et al. Deficiency in inducible nitric oxide synthase results in reduced atherosclerosis in apolipoprotein E-deficient mice. J. Immunol. 165, 3430–3435 (2000).

    Article  CAS  PubMed  Google Scholar 

  36. Shi, W. et al. Paradoxical reduction of fatty streak formation in mice lacking endothelial nitric oxide synthase. Circulation 105, 2078–2082 (2002).

    Article  CAS  PubMed  Google Scholar 

  37. Niu, X.L. et al. Inducible nitric oxide synthase deficiency does not affect the susceptibility of mice to atherosclerosis but increases collagen content in lesions. Circulation 103, 1115–1120 (2001).

    Article  CAS  PubMed  Google Scholar 

  38. Ihrig, M., Dangler, C.A. & Fox, J.G. Mice lacking inducible nitric oxide synthase develop spontaneous hypercholesterolaemia and aortic atheromas. Atherosclerosis 156, 103–107 (2001).

    Article  CAS  PubMed  Google Scholar 

  39. Daugherty, A., Dunn, J.L., Rateri, D.L. & Heinecke, J.W. Myeloperoxidase, a catalyst for lipoprotein oxidation, is expressed in human atherosclerotic lesions. J. Clin. Invest. 94, 437–444 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Brennan, M.L. et al. Increased atherosclerosis in myeloperoxidase-deficient mice. J Clin Invest 107, 419–430 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Steinberg, D. & Witztum, J.L. Is the oxidative modification hypothesis relevant to human atherosclerosis? Do the antioxidant trials conducted to date refute the hypothesis? Circulation 105, 2107–2111 (2002).

    Article  PubMed  Google Scholar 

  42. Scheidegger, K.J., Butler, S. & Witztum, J.L. Angiotensin II increases macrophage-mediated modification of low density lipoprotein via a lipoxygenase-dependent pathway. J. Biol. Chem. 272, 21609–21615 (1997).

    Article  CAS  PubMed  Google Scholar 

  43. Hayek, T. et al. The angiotensin-converting enzyme inhibitor, fosinopril, and the angiotensin II receptor antagonist, losartan, inhibit LDL oxidation and attenuate atherosclerosis independent of lowering blood pressure in apolipoprotein E deficient mice. Cardiovasc. Res. 44, 579–587 (1999).

    Article  CAS  PubMed  Google Scholar 

  44. Boullier, A. et al. Scavenger receptors, oxidized LDL, and atherosclerosis. Ann. NY Acad. Sci. 947, 214–222 (2001).

    Article  CAS  PubMed  Google Scholar 

  45. Febbraio, M., Hajjar, D.P. & Silverstein, R.L. CD36: a class B scavenger receptor involved in angiogenesis, atherosclerosis, inflammation, and lipid metabolism. J. Clin. Invest. 108, 785–791 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Shaw, P. et al. Natural antibodies with the T15 idiotype may act in atherosclerosis, apoptotic clearance, and protective immunity. J. Clin. Invest. 105, 1731–1740 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Acton, S. et al. Identification of scavenger receptor SR-BI as a high density lipoprotein receptor. Science 271, 518–520 (1996).

    Article  CAS  PubMed  Google Scholar 

  48. Ji, Y. et al. Hepatic scavenger receptor BI promotes rapid clearance of high density lipoprotein free cholesterol and its transport into bile. J. Biol. Chem. 274, 33398–33402 (1999).

    Article  CAS  PubMed  Google Scholar 

  49. Kozarsky, K.F. et al. Overexpression of the HDL receptor SR-BI alters plasma HDL and bile cholesterol levels. Nature 387, 414–417 (1997).

    Article  CAS  PubMed  Google Scholar 

  50. Krieger, M. Scavenger receptor class B type I is a multiligand HDL receptor that influences diverse physiologic systems. J. Clin. Invest. 108, 793–797 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Braun, A. et al. Loss of SR-BI expression leads to the early onset of occlusive atherosclerotic coronary artery disease, spontaneous myocardial infarctions, severe cardiac dysfunction, and premature death in apolipoprotein E-deficient mice. Circ. Res. 90, 270–276 (2002).

    Article  CAS  PubMed  Google Scholar 

  52. Huszar, D. et al. Increased LDL cholesterol and atherosclerosis in LDL receptor-deficient mice with attenuated expression of scavenger receptor B1. Arterioscler. Thromb. Vasc. Biol. 20, 1068–1073 (2000).

    Article  CAS  PubMed  Google Scholar 

  53. Chen, W., Silver, D.L., Smith, J.D. & Tall, A.R. Scavenger receptor-BI inhibits ATP-binding cassette transporter 1-mediated cholesterol efflux in macrophages. J. Biol. Chem. 275, 30794–30800 (2000).

    Article  CAS  PubMed  Google Scholar 

  54. Brewer, H.B., Jr. The lipid-laden foam cell: An elusive target for therapeutic intervention. J. Clin. Invest. 105, 703–705 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Accad, M. et al. Massive zanthomatosis and altered composition of atherosclerotic lesions in hyperlipidemic mice lacking acyl CoA:cholesterol acyltransferase 1. J. Clin. Invest. 105, 711–719 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Fazio, S. et al. Increased atherosclerosis in LDL receptor-null mice lacking ACAT1 in macrophages. J. Clin. Invest. 107, 163–171 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Escary, J.L. et al. Paradoxical effect on atherosclerosis of hormone-sensitive lipase overexpression in macrophages. J. Lipid Res. 40, 397–404 (1999).

    CAS  PubMed  Google Scholar 

  58. Kusunoki, J. et al. Acyl-CoA:cholesterol acyltransferase inhibition reduces atherosclerosis in apolipoprotein E-deficient mice. Circulation 103, 2604–2609 (2001).

    Article  CAS  PubMed  Google Scholar 

  59. Brown, M.S. & Goldstein, J.L. A proteolytic pathway that controls the cholesterol content of membranes, cells, and blood. Proc. Natl. Acad. Sci. USA 96, 11041–11048 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Chawla, A., Repa, J., Evans, R. & Mangelsdorf, D. Nuclear receptors and lipid physiology: Opening the X-Files. Science 294, 1866–1870 (2001).

    Article  CAS  PubMed  Google Scholar 

  61. Laffitte, B.A. et al. LXRs control lipid-inducible expression of the apolipoprotein E gene in macrophages and adipocytes. Proc. Natl. Acad. Sci. USA 98, 507–512 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Repa, J.J. et al. Regulation of mouse sterol regulatory element-binding protein-1c (SREBP-1c) by oxysterol receptors LXR-α and LXR-β. Genes Dev. 14, 2819–2830 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Chawla, A. et al. A PPARγ-LXR-ABCA1 pathway in macrophages is involved in cholesterol efflux and atherogenesis. Mol. Cell 7, 161–171 (2001).

    Article  CAS  PubMed  Google Scholar 

  64. Tall, A.R. & Wang, N. Tangier disease as a test of the reverse cholesterol transport hypothesis. J. Clin. Invest. 106, 1205–1207 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Aiello, R.J. et al. Increased atherosclerosis in hyperlipidemic mice with inactivation of ABCA1 in macrophages. Arterioscler. Thromb. Vasc. Biol. 22, 630–637 (2002).

    Article  CAS  PubMed  Google Scholar 

  66. van Eck, M. et al. Leukocyte ABCA1 controls susceptibility to atherosclerosis and macrophage recruitment into tissues. Proc. Natl. Acad. Sci. USA 99, 6298–6303 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Singaraja, R.R. et al. Increased ABCA1 activity protects against atherosclerosis. J. Clin. Invest. 110, 35–42 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Clee, S.M. et al. Common genetic variation in ABCA1 is associated with altered lipoprotein levels and a modified risk for coronary artery disease. Circulation 103, 1198–1205 (2001).

    Article  CAS  PubMed  Google Scholar 

  69. Claudel, T. et al. Reduction of atherosclerosis in apolipoprotein E knockout mice by activation of the retinoid X receptor. Proc. Natl. Acad. Sci. USA 98, 2610–2615 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Joseph, S.B. et al. Synthetic LXR ligand inhibits the development of atherosclerosis in mice. Proc. Natl. Acad. Sci. USA 99, 7604–7609 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Goldberg, I.J. & Merkel, M. Lipoprotein lipase: physiology, biochemistry, and molecular biology. Front. Biosci. 6, D388–405 (2001).

    CAS  PubMed  Google Scholar 

  72. Mead, J.R. & Ramji, D.P. The pivotal role of lipoprotein lipase in atherosclerosis. Cardiovasc. Res. 55, 261–269 (2002).

    Article  CAS  PubMed  Google Scholar 

  73. Yagyu, H. et al. Overexpressed lipoprotein lipase protects against atherosclerosis in apolipoprotein E knockout mice. J. Lipid Res. 40, 1677–1685 (1999).

    CAS  PubMed  Google Scholar 

  74. Wilson, K., Fry, G.L., Chappell, D.A., Sigmund, C.D. & Medh, J.D. Macrophage-specific expression of human lipoprotein lipase accelerates atherosclerosis in transgenic apolipoprotein e knockout mice but not in C57BL/6 mice. Arterioscler. Thromb. Vasc. Biol. 21, 1809–1815 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Babaev, V.R. et al. Macrophage lipoprotein lipase promotes foam cell formation and atherosclerosis in vivo. J. Clin. Invest. 103, 1697–1705 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Wang, Y. & Oram, J.F. Unsaturated fatty acids inhibit cholesterol efflux from macrophages by increasing degradation of ATP-binding cassette transporter A1. J. Biol. Chem. 277, 5692–5697 (2002).

    Article  CAS  PubMed  Google Scholar 

  77. Barbier, O. et al. Pleiotropic actions of peroxisome proliferator-activated receptors in lipid metabolism and atherosclerosis. Arterioscler. Thromb. Vasc. Biol. 22, 717–726 (2002).

    Article  CAS  PubMed  Google Scholar 

  78. Oliver, W.R., Jr. et al. A selective peroxisome proliferator-activated receptor delta agonist promotes reverse cholesterol transport. Proc. Natl. Acad. Sci. USA 98, 5306–5311 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Daugherty, A. et al. The effects of total lymphocyte deficiency on the extent of atherosclerosis in apolipoprotein E−/− mice. J. Clin. Invest. 100, 1575–1580 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Song, L., Leung, C. & Schindler, C. Lymphocytes are important in early atherosclerosis. J. Clin. Invest. 108, 251–259 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Reardon, C.A. et al. Effect of immune deficiency on lipoproteins and atherosclerosis in male apolipoprotein E-deficient mice. Arterioscler. Thromb. Vasc. Biol. 21, 1011–1016 (2001).

    Article  CAS  PubMed  Google Scholar 

  82. Dansky, H.M., Charlton, S.A., Harper, M.M. & Smith, J.D. T and B lymphocytes play a minor role in atherosclerotic plaque formation in the apolipoprotein E-deficient mouse. Proc. Natl. Acad. Sci. USA 94, 4662–4646 (1997).

    Article  Google Scholar 

  83. Horkko, S. et al. Immunological responses to oxidized LDL. Free Radic. Biol. Med. 28, 1771–1779 (2000).

    Article  CAS  PubMed  Google Scholar 

  84. Panousis, C.G. & Zuckerman, S.H. Interferon-γ induces downregulation of Tangier disease gene (ATP-binding-cassette transporter 1) in macrophage-derived foam cells. Arterioscler. Thromb. Vasc. Biol. 20, 1565–1571 (2000).

    Article  CAS  PubMed  Google Scholar 

  85. Gupta, S. et al. IFN-γ potentiates atherosclerosis in ApoE knock-out mice. J. Clin. Invest. 99, 2752–2761 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Pinderski, L.J. et al. Overexpression of interleukin-10 by activated T lymphocytes inhibits atherosclerosis in LDL receptor-deficient mice by altering lymphocyte and macrophage phenotypes. Circ. Res. 90, 1064–1071 (2002).

    Article  CAS  PubMed  Google Scholar 

  87. Mallat, Z. et al. Protective role of interleukin-10 in atherosclerosis. Circ. Res. 85, e17–24 (1999).

    Article  CAS  PubMed  Google Scholar 

  88. Palinski, W. & Tsimikas, S. Immunomodulatory effects of statins: mechanisms and potential impact on arteriosclerosis. J. Am. Soc. Nephrol. 13, 1673–1681 (2002).

    Article  CAS  PubMed  Google Scholar 

  89. Yasojima, K., Schwab, C., McGeer, E.G. & McGeer, P.L. Generation of C-reactive protein and complement components in atherosclerotic plaques. Am. J. Pathol. 158, 1039–1051 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Willson, T.M., Lambert, M.H. & Kliewer, S.A. Peroxisome proliferator-activated receptor gamma and metabolic disease. Annu. Rev. Biochem. 70, 341–367 (2001).

    Article  CAS  PubMed  Google Scholar 

  91. Klappacher, G.W. & Glass, C.K. Roles of peroxisome proliferator-activated receptor gamma in lipid homeostasis and inflammatory responses of macrophages. Curr. Opin. Lipidol. 13, 305–312 (2002).

    Article  CAS  PubMed  Google Scholar 

  92. Haffner, S.M. et al. Effect of rosiglitazone treatment on nontraditional markers of cardiovascular disease in patients with type 2 diabetes mellitus. Circulation 106, 679–684 (2002).

    Article  CAS  PubMed  Google Scholar 

  93. Burleigh, M.E. et al. Cyclooxygenase-2 promotes early atherosclerotic lesion formation in LDL receptor-deficient mice. Circulation 105, 1816–1823 (2002).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Because of space limitations, we were unable to cite all of the primary sources of data discussed in this review. We thank J.L. Witztum for comments and A. Zulueta for assistance with preparation of the manuscript. We thank the Stanford University Donald W. Reynolds Center and National Institutes of Health grants to the La Jolla Specialized Center for Research on Molecular Medicine and Atherosclerosis for support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher K. Glass.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, A., Glass, C. The macrophage foam cell as a target for therapeutic intervention. Nat Med 8, 1235–1242 (2002). https://doi.org/10.1038/nm1102-1235

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm1102-1235

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing