Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Inhibition of matrix metalloproteinases blocks lethal hepatitis and apoptosis induced by tumor necrosis factor and allows safe antitumor therapy

Abstract

Acute and fulminant liver failure induced by viral hepatitis, alcohol or other hepatotoxic drugs, are associated with tumor necrosis factor (TNF) production. In a mouse model of lethal hepatitis induced by TNF, apoptosis and necrosis of hepatocytes, but also lethality, hypothermia and influx of leukocytes into the liver, are prevented by a broad-spectrum matrix metalloproteinase (MMP) inhibitor, BB-94. Mice deficient in MMP-2, MMP-3 or MMP-9 had lower levels of apoptosis and necrosis of hepatocytes, and better survival. We found induction of MMP-9 activity and fibronectin degradation. Our findings suggest that several MMPs play a critical role in acute, fulminant hepatitis by degrading the extracellular matrix and allowing massive leukocyte influx in the liver. BB-94 also prevented lethality in TNF/interferon-γ therapy in tumor-bearing mice. A broad-spectrum MMP inhibitor may be potentially useful for the treatment of patients with acute and perhaps chronic liver failure, and in cancer therapies using inflammatory cytokines.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Protection by BB-94 against TNF/GalN-induced acute lethal hepatitis.
Figure 2: Livers of TNF/GalN-treated mice 6 h after challenge.
Figure 3: Involvement of individual MMPs in TNF-induced lethal hepatitis.
Figure 4: Zymography and western-blot analysis of plasma and liver homogenates of TNF- and/or GalN-treated mice.
Figure 5: Leukocyte influx in the liver 6 h after TNF/GalN challenge.
Figure 6: Protective effect of BB-94 pretreatment on treatment of a B16BL6 tumor with TNF/IFN-γ.

Similar content being viewed by others

References

  1. Bernal, W. & Wendon, J. Acute liver failure; clinical features and management. Eur. J. Gastroenterol. Hepatol. 11, 977–984 (1999).

    Article  CAS  Google Scholar 

  2. Marcellin, P. Hepatitis C: The clinical spectrum of the disease. J. Hepatol. 31, 9–16 (1999).

    Article  Google Scholar 

  3. Hoofnagle, J.H., Carithers, R.L. Jr, Shapiro, C. & Ascher, N. Fulminant hepatic failure: summary of a workshop. Hepatology. 21, 240–252 (1995).

    CAS  PubMed  Google Scholar 

  4. Gonzalez–Amaro, R. et al. Induction of tumor necrosis factor α production by human hepatocytes in chronic viral hepatitis. J. Exp. Med. 179, 841–848 (1994).

    Article  Google Scholar 

  5. Bird, G.L.A., Sheron, N., Goka, J., Alexander, G.J. & Williams, R.S. Increased plasma tumor necrosis factor in severe alcoholic hepatitis. Ann. Intern. Med. 112, 917–920 (1990).

    Article  CAS  Google Scholar 

  6. Muto, Y. et al. Enhanced tumour necrosis factor and interleukin-1 in fulminant hepatic failure. Lancet 8602, 72–74 (1988).

    Article  Google Scholar 

  7. Kowdley, K.V. TNF-α in chronic hepatitis C: The smoking gun? Am. J. Gastroenterol. 94, 1132–1135 (1999).

    Article  CAS  Google Scholar 

  8. Beyaert, R. & Fiers, W. Tumor necrosis factor and lymphotoxin. in Cytokines. (eds. Mire-Sluis, A.R. & Thorpe, R.) 335–360 (Academic Press, San Diego, 1998).

    Chapter  Google Scholar 

  9. Fransen, L., Ruysschaert, M.R., Van der Heyden, J. & Fiers, W. Recombinant tumor necrosis factor: species specificity for a variety of human and murine transformed cell lines. Cell. Immunol. 100, 260–267 (1986).

    Article  CAS  Google Scholar 

  10. Brouckaert, P.G.G., Leroux–Roels, G.G., Guisez, Y., Tavernier, J. & Fiers, W. In vivo anti-tumour activity of recombinant human and murine TNF, alone and in combination with murine IFN-gamma, on a syngeneic murine melanoma. Int. J. Cancer 38, 763–769 (1986).

    Article  CAS  Google Scholar 

  11. Leist, M., Gantner, F., Jilg, S. & Wendel, A. Activation of the 55 kDa TNF receptor is necessary and sufficient for TNF-induced liver failure, hepatocyte apoptosis, and nitrite release. J. Immunol. 154,1307–1316 (1995)

    CAS  PubMed  Google Scholar 

  12. Iimuro, Y., Gallucci, R.M., Luster, M.I., Kono, H. & Thurman, R.G. Antibodies to tumor necrosis factor α attenuate hepatic necrosis and inflammation caused by chronic exposure to ethanol in the rat. Hepatology 26, 1530–1537 (1997).

    Article  CAS  Google Scholar 

  13. Brennan, F.M. et al. Reduction of serum matrix metalloproteinase 1 and matrix metalloproteinase 3 in rheumatoid arthritis patients following anti-tumour necrosis factor-α (cA2) therapy. Br. J. Rheumat. 36, 643–650 (1997).

    Article  CAS  Google Scholar 

  14. Rajavashisth, T.B. et al. Membrane type 1 matrix metalloproteinase expression in human atherosclerotic plaques: evidence for activation by proinflammatory mediators. Circulation 99, 3103–3109 (1999).

    Article  CAS  Google Scholar 

  15. Holmbeck, K. et al. MT1-MMP-deficient mice develop dwarfism, osteopenia, arthritis, and connective tissue disease due to inadequate collagen turnover. Cell 99, 81–92 (1999).

    Article  CAS  Google Scholar 

  16. Vu, T.H. et al. MMP-9/gelatinase B is a key regulator of growth plate angiogenesis and apoptosis of hypertrophic chondrocytes. Cell 93, 411–422 (1998).

    Article  CAS  Google Scholar 

  17. Shapiro, S.D. Matrix metalloproteinase degradation of extracellular matrix: Biological consequences. Curr. Opin. Cell. Biol. 10, 602–608 (1998).

    Article  CAS  Google Scholar 

  18. Lund, L.R. et al. Functional overlap between two classes of matrix-degrading proteases in wound healing. EMBO J. 18, 4645–4656 (1999).

    Article  CAS  Google Scholar 

  19. Lochter, A., Sternlicht M.D., Werb, Z. & Bissell, M.J. The significance of matrix metalloproteinases during early stages of tumor progression. Ann. NY Acad. Sci. 857, 180–193 (1998).

    Article  CAS  Google Scholar 

  20. Hautamaki, R.D., Kobayashi, D.K., Senior, R.M. & Shapiro, S.D. Requirement for macrophage elastase for cigarette smoke-induced emphysema in mice. Science 277, 2002–2004 (1997).

    Article  CAS  Google Scholar 

  21. Knittel, T. et al. Expression patterns of matrix metalloproteinases and their inhibitors in parenchymal and non-parenchymal cells of rat liver: Regulation by TNF-α and TGF-β1. J. Hepatol. 30, 48–60 (1999).

    Article  CAS  Google Scholar 

  22. Decker, K. & Keppler, D. Galactosamine hepatitis: key role of the nucleotide deficiency period in the pathogenesis of cell injury and cell death. Rev. Physiol. Biochem. Pharmacol. 71, 77–106 (1974).

    Article  CAS  Google Scholar 

  23. Koivunen, E. et al. Tumor targeting with a selective gelatinase inhibitor. Nature Biotechnol. 17, 768–774 (1999).

    Article  CAS  Google Scholar 

  24. Jaeschke, H., Farhood, A. & Smith, W. Neutrophil-induced liver cell injury in endotoxin shock is a CD11b/CD18-dependent mechanism. Am. J. Physiol. 261, 1051–1056 (1991).

    Google Scholar 

  25. Shiratori, Y. et al. Role of endotoxin-responsive macrophages in hepatic injury. Hepatology 11, 183–192 (1990).

    Article  CAS  Google Scholar 

  26. Sternlicht, M.D. et al. The stromal proteinase MMP3/stromelysin-1 promotes mammary carcinogenesis. Cell 98, 137–146 (1999).

    Article  CAS  Google Scholar 

  27. Carmeliet, P. et al. Urokinase-generated plasmin activates matrix metalloproteinases during aneurysm formation. Nature Genet. 17, 439–444 (1997).

    Article  CAS  Google Scholar 

  28. Alexander, R.B. & Rosenberg, S.A. Tumor necrosis factor: clinical applications. in Biologic Therapy of Cancer. (eds. DeVita, V.T. Jr, Hellman, S. & Rosenberg, S.A) 378–392 (J.B. Lippincott, Philadelphia, 1991).

    Google Scholar 

  29. Libert, C., Brouckaert, P. & Fiers, W. Protection by α1-acid glycoprotein against tumor necrosis factor-induced lethality. J. Exp. Med. 180, 1571–1575 (1994).

    Article  CAS  Google Scholar 

  30. Skotnicki, J.S. et al. Design and synthetic considerations of matrix metalloproteinase inhibitors. Ann NY Acad. Sci. 878, 61–72 (1999).

    Article  CAS  Google Scholar 

  31. Yamamoto, M. et al. Inhibition of membrane-type 1 matrix metalloproteinase by hydroxamate inhibitors: An examination of the subsite pocket. J. Med. Chem. 41, 1209–1217 (1998).

    Article  CAS  Google Scholar 

  32. Giavazzi, R. et al. Batimastat, a synthetic inhibitor of matrix metalloproteinases, potentiates the antitumor activity of cisplatin in ovarian carcinoma xenografts. Clin. Cancer Res. 4, 985–992 (1998).

    CAS  PubMed  Google Scholar 

  33. Arthur, M.J.P. Fibrogenesis II. Metalloproteinases and their inhibitors in liver fibrosis. Am. J. Physiol. Gastrointest. Liver Physiol. 279, 245–249 (2000).

    Article  Google Scholar 

  34. Takenaka, K., Sakaida, I., Yasunaga, M. & Okita, K. Ultrastructural study of development of hepatic necrosis induced by TNF-α and d-galactosamine. Dig. Dis. Sci. 43, 887–892 (1998).

    Article  CAS  Google Scholar 

  35. Pugin, J. et al. Human neutrophils secrete gelatinase B in vitro and in vivo in response to endotoxin and proinflammatory mediators. Am. J. Respir. Cell. Mol. Biol. 20, 458–464 (1999).

    Article  CAS  Google Scholar 

  36. Martinez-Hernandez, A. & Amenta, P.S. The hepatic extracellular matrix. Virchows Archiv. A Pathol. Anat. 423, 1–11 (1993).

    Article  CAS  Google Scholar 

  37. Amour, A. et al. Inhibition of the metalloproteinase domain of mouse TACE. Ann. NY Acad. Sci. 878, 728–731 (1999).

    Article  CAS  Google Scholar 

  38. Gearing, A.J. et al. Processing of tumour necrosis factor-α precursor by metalloproteinases. Nature 370, 555–557 (1994).

    Article  CAS  Google Scholar 

  39. Yu, Q. & Stamenkovic, I. Cell surface-localized matrix metalloproteinase-9 proteolytically activates TGF-β and promotes tumor invasion and angiogenesis. Genes Dev. 14, 163–176 (2000).

    PubMed  PubMed Central  Google Scholar 

  40. Schonbeck, U., Mach, F. & Libby P. Generation of biologically active IL-1β by matrix metalloproteinases: a novel caspase-1-independent pathway of IL-1β processing. J. Immunol. 161, 3340–3346 (1998).

    CAS  PubMed  Google Scholar 

  41. Murdoch, W.J. Plasmin-tumour necrosis factor interaction in the ovulatory process. J. Reprod. Fertil. Suppl. 54, 353–358 (1999).

    CAS  PubMed  Google Scholar 

  42. Lochter, A. et al. Matrix metalloproteinase stromelysin-1 triggers a cascade of molecular alterations that leads to stable epithelial-to-mesenchymal conversion and a premalignant phenotype in mammary epithelial cells. J. Cell Biol. 139, 1861–1872 (1997).

    Article  CAS  Google Scholar 

  43. Libert, C. et al. Response of interleukin-6–deficient mice to tumor necrosis factor-induced metabolic changes and lethality. Eur. J. Immunol. 24, 2237–2242 (1994).

    Article  CAS  Google Scholar 

  44. Everaerdt, B., Brouckaert, P. & Fiers, W. A recombinant interleukin-1 receptor antagonist protects against tumor necrosis factor-induced lethality in mice. J. Immunol. 152, 5041–5049 (1994).

    CAS  PubMed  Google Scholar 

  45. Itoh, T. et al. Unaltered secretion of β-amyloid precursor protein in gelatinase A (matrix metalloproteinase 2)-deficient mice. J. Biol. Chem. 272, 22389–22392 (1997).

    Article  CAS  Google Scholar 

  46. Mudgett, J.S. et al. Susceptibility of stromelysin 1-deficient mice to collagen-induced arthritis and cartilage destruction. Arthritis Rheum. 41, 110–121 (1998).

    Article  CAS  Google Scholar 

  47. Shipley, J.M., Wesselschmidt, R.L., Kobayashi, D.K., Ley, T.J. & Shapiro, S.D. Metalloelastase is required for macrophage-mediated proteolysis and matrix invasion in mice. Proc. Natl. Acad. Sci. USA 93, 3942–3946 (1996).

    Article  CAS  Google Scholar 

  48. Van Molle, W., C. Libert, W. Fiers & Brouckaert, P. α1-Acid glycoprotein and α1-antitrypsin inhibit TNF-induced but not anti-Fas-induced apoptosis of hepatocytes in mice. J. Immunol. 159, 3555–3561 (1997).

    CAS  PubMed  Google Scholar 

  49. Van Molle, W. et al. Activation of caspases in lethal experimental hepatitis and prevention by acute phase proteins. J. Immunol. 163, 5235–5241 (1999).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank F. Duerinck for preparing recombinant TNF; J. Vanden Berghe, L. Puimège, L. Van Geert, M. Goessens and E. Spruyt for excellent technical assistance; M. Goethals for preparing cyclic decapeptide; L. Moons for providing anti-MMP-9 antibody; British Biotech for MMP inhibitor; and J.S. Mudgett for MMP-3-deficient mice. This work was supported by the Interuniversitaire Attractiepolen and the Fonds voor Wetenschappelijk Onderzoek–Vlaanderen.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claude Libert.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wielockx, B., Lannoy, K., Shapiro, S. et al. Inhibition of matrix metalloproteinases blocks lethal hepatitis and apoptosis induced by tumor necrosis factor and allows safe antitumor therapy. Nat Med 7, 1202–1208 (2001). https://doi.org/10.1038/nm1101-1202

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm1101-1202

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing