Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A subset of lupus anti-DNA antibodies cross-reacts with the NR2 glutamate receptor in systemic lupus erythematosus

Abstract

In systemic lupus erythematosus, antibodies against double-stranded DNA are a major contributor to renal disease. We have previously demonstrated that the pentapeptide Asp/Glu-Trp-Asp/Glu-Tyr-Ser/Gly is a molecular mimic of double-stranded DNA. This sequence is also present in the extracellular domain of murine and human NMDA (N-methyl-d-aspartate) receptor subunits NR2a and NR2b. Here we show that the NR2 receptor is recognized by both murine and human anti-DNA antibodies. Moreover, anti-DNA antibodies with this cross-reactivity mediate apoptotic death of neurons in vivo and in vitro. Finally, we show that the cerebrospinal fluid of a patient with systemic lupus erythematosus contains these antibodies and also mediates neuronal death via an apoptotic pathway. These observations indicate that lupus antibodies cross-react with DNA and NMDA receptors, gain access to cerebrospinal fluid and may mediate non-thrombotic and non-vasculitic abnormalities of the central nervous system.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: R4A monoclonal antibody recognizes NR2.
Figure 2: R4A mediates neuron death via apoptosis.
Figure 3: Human anti-peptide antibodies bind DNA.
Figure 4: Human anti-peptide antibody causes neuron death.
Figure 5: R4A and human anti-peptide antibody causes apoptosis in primary neuron cultures.
Figure 6: Lupus CSF has anti-peptide, anti-DNA and ANA activity.

Similar content being viewed by others

References

  1. Kozora, E., Thompson, L.L., West, S.G., & Kotzin, B.L. Analysis of cognitive and psychological deficits in systemic lupus erythematosus patients without overt central nervous system disease. Arthritis Rheum. 39, 2035–2045 (1997).

    Article  Google Scholar 

  2. Gonzalez-Crespo, M.R. et al. Magnetic resonance imaging of the brain in systemic lupus erythematosus. Br. J. Rheumatology 34, 1055–1066 (1995).

    Article  CAS  Google Scholar 

  3. Viard, J.P. et al. Anti-histone reactivity in systemic lupus erythematosus sera: A disease activity index linked to the presence of DNA: Anti-DNA immune complexes. Autoimmunity 12, 61–68 (1992).

    Article  CAS  Google Scholar 

  4. Lefkowith, J.B. et al. Heterogeneity and clinical significance of glomerular-binding antibodies in systemic lupus erythematosus. J. Clin. Invest. 98, 1373–1380 (1996).

    Article  CAS  Google Scholar 

  5. Spatz, L. et al. Studies on the structure, regulation and pathogenic potential of anti-dsDNA antibodies. Methods 11, 70–78 (1997).

    Article  CAS  Google Scholar 

  6. Kowal, C.L., Weinstein, A. & Diamond, B. Molecular mimicry between bacterial and self Ag in a patient with systemic lupus erythematosus. Eur. J. Immunol. 29, 1901–1911 (1999).

    Article  CAS  Google Scholar 

  7. Limpanasithikul, W., Ray, S. & Diamond, B. Cross reactive antibodies have both protective and pathogenic potential. J. Immunol. 155, 967–973 (1995).

    CAS  PubMed  Google Scholar 

  8. Chan, T.M., Yu, P.M., Tsang, K.L. & Cheng, I.K. Endothelial cell binding by human polyclonal anti-DNA antibodies: Relationship to disease activity and endothelial functional alterations. Clin. Exp. Immunol. 100, 506–513 (1995).

    Article  CAS  Google Scholar 

  9. Jacob, L. et al. Presence of antibodies against a cell-surface protein, cross-reactive with DNA, in systemic lupus erythematosus: A marker of the disease. Proc. Natl. Acad. Sci. USA 84, 2956–2959 (1987).

    Article  CAS  Google Scholar 

  10. Hansen, C. et al. Glycosaminoglycan in autoimmunity. Clin. Exp. Rheumatol. 15, 59–67 (1996).

    Article  Google Scholar 

  11. Katz, J.B., Limpanasithikul, W. & Diamond, B. Mutational analysis of an autoantibody: differential binding and pathogenicity. J. Exp. Med. 180, 925–932 (1994).

    Article  CAS  Google Scholar 

  12. Budhai, L., Oh, K. & Davidson, A. An in vitro assay for detection of glomerular binding IgG autoantibodies in patients with systemic lupus erythematosus. J. Clin. Invest. 98, 1585–1593 (1996).

    Article  CAS  Google Scholar 

  13. Gaynor, B. et al. Peptide inhibition of glomerular deposition of an pathogenic anti-DNA antibody: Implications for therapy. Proc. Natl. Acad. Sci. USA 94, 1955–1960 (1997).

    Article  CAS  Google Scholar 

  14. Putterman, C. & Diamond, B. Immunization with a peptide surrogate for dsDNA induces autoantibody production and renal immunoglobulin deposition. J. Exp. Med. 188, 29–38 (1998).

    Article  CAS  Google Scholar 

  15. Standaert, D. G., Testa, C. M., Penney, J. B. & Young, A. B. Organization of N-methyl-d-aspartate glutamate receptor gene expression in the basal ganglia of the rat. J. Comp. Neurol. 343, 1–16 (1994).

    Article  CAS  Google Scholar 

  16. Scherzer, C. R. et al. Expression of N-methyl 1-d-aspartate receptor subunit mRNAs in the human brain: hippocampus and cortex. J. Comp. Neurol. 390, 75–90 (1998).

    Article  CAS  Google Scholar 

  17. Kosinski, C.M. et al. Expression of N-methyl-d-aspartate receptor subunit mRNAs in the human brain: striatum and globus pallidus. J. Comp. Neurol. 63–74 (1998).

  18. Kuppenbender, K.D. et al. Expression of NMDA receptor subunit mRNAs in neurochemically identified projection and interneurons in the human striatum. J. Comp. Neurol. 419, 407–421 (2000).

    Article  CAS  Google Scholar 

  19. Ozawa, S., Kamiya, H. & Tsuzuki, K. Glutamate receptors in the mammalian central nervous system. Prog. Neurobiol. 54, 581–618 (1998).

    Article  CAS  Google Scholar 

  20. Sakimura, K et al., Reduced hippocampal LTP and spatial learning in mice lacking NMDA receptor,1 subunit. Nature 373, 151–155 (1995)

    Article  CAS  Google Scholar 

  21. Morris, R.G., Anderson, E., Lynch, G.S. & Baudry, M. Selective impairment of learning and blockade of long-term potentiation by an N-methyl-d-aspartate receptor antagonist, AP5. Nature 319, 774–776 (1986).

    Article  CAS  Google Scholar 

  22. Choi, D.W. & Rothman, S.M. The role of glutamate neurotoxicity in hypoxicischemic neuronal death. Annu. Rev. Neurosci. 13, 171–182 (1990).

    Article  CAS  Google Scholar 

  23. Mattson, M.P. et al. Calcium signaling in the ER: its role in neuronal plasticity and neurodegenerative disorders. Trends Neurosci. 23, 222–229 (2000).

    Article  CAS  Google Scholar 

  24. Akbarian, S. et al. Selective alterations in gene expression for NMDA receptor subunits in prefrontal cortex of schizophrenics. J. Neurosci. 16, 19–30 (1996).

    Article  CAS  Google Scholar 

  25. Javitt, D.C. & Zukin, S.R. Recent advances in the phencyclidine model of schizophrenia. Am. J. Psychiatry. 148, 1301–1318 (1991).

    Article  CAS  Google Scholar 

  26. Olney, J.W., Newcomer, J.W. & Farber, N.B. NMDA receptor hypo function model of schizophrenia. J. Psychiatry. Res. 33, 523–533 (1999).

    Article  CAS  Google Scholar 

  27. Jentsch, J.D. & Roth, R.H. The neuropsychopharmacology of phencyclidine: from NMDA receptor hypo function to the dopamine hypothesis of schizophrenia. Neuropsychopharmacology. 20, 201–225 (1999).

    Article  CAS  Google Scholar 

  28. Volpe, B.T. Delayed neuronal degeneration results from endogenous glutamate excess: Possible role in "Neuro-SLE". Ann. NY Acad. Sci. 823, 185–187 (1997).

    Article  CAS  Google Scholar 

  29. Sharma, T.A. & Reynolds, I.J. Characterization of the effects of polyamines on 1251 MK-801 binding to recombinant N-methyl-d-aspartate receptors. J. Pharmacol. Exp. Ther. 289, 1041–1047 (1999).

    CAS  PubMed  Google Scholar 

  30. Monaghan, D.T. & Larsen, H. NR1 and NR2 subunit contributions to N-methyl-d-aspartate receptor channel blocker pharmacology. J. Pharmacol. Exp. Ther. 280, 614–620 (1997).

    CAS  PubMed  Google Scholar 

  31. Bluestein, H.G. & Zvaifler, N.J. Antibodies reactive with central nervous system antigens. Hum. Pathol. 14, 424–428 (1983).

    Article  CAS  Google Scholar 

  32. Bell, C.L. et al. Magnetic resonance imaging of central nervous system lesions in patients with lupus erythematosus. Correlation with clinical remission and antineurofilament and anticardiolipin antibody titers. Arthritis Rheum. 34, 432–441 (1991).

    Article  CAS  Google Scholar 

  33. Hanson, V.G., Horowitz, M., Rosenbluth, D., Speira, H., & Puszkin, S. Systemic lupus erythematosus patients with central nervous system involvement show autoantibodies to a 50-kD neuronal membrane protein. J. Exp. Med. 176, 565–573 (1992).

    Article  CAS  Google Scholar 

  34. Golombek, S.J., Graus, F.K. & Elkon, B. Autoantibodies in the cerebrospinal fluid of patients with systemic lupus erythematosus. Arthritis Rheum. 29, 1090–1097 (1986).

    Article  CAS  Google Scholar 

  35. Whitney, K.D. & McNamara, J.O. Autoimmunity and neurological disease: Antibody modulation of synaptic transmission. Annu. Rev. Neurosci. 22, 175–195 (1999).

    Article  CAS  Google Scholar 

  36. He, X.P. et al. Glutamate receptor GluR3 antibodies and death of cortical cells. Neuron 20, 7307–7316 (2000).

    Google Scholar 

  37. Whitney, K.D. & McNamara, J.O. GluR3 autoantibodies destroy neural cells in a complement-dependent manner modulated by complement regulatory proteins. J. Neurosci. 20, 7307–7316 (2000).

    Article  CAS  Google Scholar 

  38. Gahring, L.C., Carlson, N.G., Meyer, E.L. & Rogers, S.W. Granzyme B proteolysis of a neuronal glutamate receptor generates an autoantigen and is modulated by glycosylation. J. Immunol. 166, 1–7 (2001).

    Article  Google Scholar 

  39. Yang, Y.Y., Yin, G.L. & Darnell, R.B. The neuronal RNA-binding protein Nova-2 is implicated as the autoantigen targeted in POMA patients with dementia. Proc. Natl. Acad. Sci. USA 95, 13254–13259 (1998).

    Article  CAS  Google Scholar 

  40. Genain, C.P., Cannella, B., Hauser, S.L. & Raine, C.S. Identification of autoantibodies associated with myelin damage in multiple sclerosis. Nature Med. 5, 171–175 (1999).

    Article  Google Scholar 

  41. Williamson, A. et al. Anti-DNA antibodies are a major component of the intrathecal B cell response in multiple sclerosis. Proc. Natl. Acad. Sci. USA 98, 1793–1798 (2001).

    Article  CAS  Google Scholar 

  42. Carr, R.I., Harbeck, R.J., Hoffman, A.A., Pirofsky, B. & Bardana, E.J. Clinical studies on the significances of DNA: anti-DNA complexes in the systemic circulation and cerebrospinal fluid (CSF) of patients with systemic lupus erythematosus. J. Rheumatology. 2, 184–193 (1975).

    CAS  Google Scholar 

  43. Skerry, T.M. & Genever, P.G. Glutamate signalling in non-neuronal tissues. Trends Pharm. Sci. 22, 174–181 (2001).

    Article  CAS  Google Scholar 

  44. Cavalheiro, E.A. & Olney, J.W. Glutamate antagonists: Deadly liaisons with cancer. Proc. Natl. Acad. Sci. 98, 5947–5948 (2001).

    Article  CAS  Google Scholar 

  45. Tan, E.M. et al. The 1982 revised criteria for the classification of systemic lupus erythematosus. Arthr. Rheum. 25, 1271–1277 (1982).

    Article  CAS  Google Scholar 

  46. Volpe, B.T., Wildmann, J. & Altar, C.A. BDNF prevents the loss of nigral neurons induced by excitotoxic striatal lesions. Neuroscience, 83, 741–748 (1998).

    Article  CAS  Google Scholar 

  47. DeGiorgio, L.A., DeGiorgio, N., Milner, T.A. & Volpe, B.T. Neurotoxic APP C-terminal and β-amyloid domains co-localize in the nuclei of substantia nigra pars reticulata neurons. Brain Res. 874, 137–46 (2000).

    Article  CAS  Google Scholar 

  48. DeGiorgio, L.A., DeGiorgio, N. & Volpe, B.T. MK-801 but not NBQX prevents transneuronal degeneration of nigra neurons after neurotoxic striatal lesion. Neuroscience. 90, 79–85 (1999).

    Article  CAS  Google Scholar 

  49. Downen, M., Amaral, T.D., Hua, L.L., Zhao, M.L., & Lee, S.C. Neuronal death in cytokine-activated primary human brain cell culture: role of tumor necrosis factor-α. Glia 28, 114–127 (1999).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank I. Joshi and W. Shen for technical help. This work was supported by grants from the National Institutes of Health, the SLE Foundation and the American Heart Association.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Betty Diamond.

Rights and permissions

Reprints and permissions

About this article

Cite this article

DeGiorgio, L., Konstantinov, K., Lee, S. et al. A subset of lupus anti-DNA antibodies cross-reacts with the NR2 glutamate receptor in systemic lupus erythematosus. Nat Med 7, 1189–1193 (2001). https://doi.org/10.1038/nm1101-1189

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm1101-1189

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing