Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Purified hematopoietic stem cells can differentiate into hepatocytes in vivo

Abstract

The characterization of hepatic progenitor cells is of great scientific and clinical interest. Here we report that intravenous injection of adult bone marrow cells in the FAH−/− mouse, an animal model of tyrosinemia type I, rescued the mouse and restored the biochemical function of its liver. Moreover, within bone marrow, only rigorously purified hematopoietic stem cells gave rise to donor-derived hematopoietic and hepatic regeneration. This result seems to contradict the conventional assumptions of the germ layer origins of tissues such as the liver, and raises the question of whether the cells of the hematopoietic stem cell phenotype are pluripotent hematopoietic cells that retain the ability to transdifferentiate, or whether they are more primitive multipotent cells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Liver histology of the FAH−/− mice 7 months after bone marrow transplantation.
Figure 2: Isolation and CD45 expression of mouse HSCs.
Figure 3: Liver histology of FAH−/− mice 6 months after KTLS HSC transplantation.
Figure 4: Immunofluorescent staining of regenerating hepatic nodules in the FAH−/− mice.

Similar content being viewed by others

References

  1. Weissman, I.L. Translating stem and progenitor cell biology to the clinic: barriers and opportunities . Science 287, 1442–1446 (2000).

    Article  CAS  Google Scholar 

  2. Till, J. & McCulloch, E. A direct measurement of the radiation sensitivity of normal mouse bone marrow cells. Radiat. Res. 14 (1961).

  3. Wu, A., Till, J., Siminovitch, L. & McCulloch, E. Cytological evidence for a relationship between normal hematopoietic colony-forming cells and cells of the lymphoid system. J. Exp. Med. 127, 455–467 (1968).

    Article  CAS  Google Scholar 

  4. Michalopoulos, G.K. & DeFrances, M.C. Liver regeneration . Science 276, 60–66 (1997).

    Article  CAS  Google Scholar 

  5. Petersen, B.E. et al. Bone marrow as a potential source of hepatic oval cells. Science 284, 1168–1170 ( 1999).

    Article  CAS  Google Scholar 

  6. Theise, N.D. et al. Derivation of hepatocytes from bone marrow cells in mice after radiation-induced myeloablation. Hepatology 31, 235–240 (2000).

    Article  CAS  Google Scholar 

  7. Grompe, M. et al. Loss of fumarylacetoacetate hydrolase is responsible for the neonatal hepatic dysfunction phenotype of lethal albino mice. Genes Dev. 7, 2298–2307 (1993).

    Article  CAS  Google Scholar 

  8. Grompe, M. et al. Pharmacological correction of neonatal lethal hepatic dysfunction in a murine model of hereditary tyrosinaemia type I. Nature Genet. 10, 453–460 ( 1995).

    Article  CAS  Google Scholar 

  9. Overturf, K. et al. Hepatocytes corrected by gene therapy are selected in vivo in a murine model of hereditary tyrosinaemia type I. Nature Genet. 12, 266–273 ( 1996); erratum: 12, 458.

    Article  CAS  Google Scholar 

  10. Zambrowicz, B.P. et al. Disruption of overlapping transcripts in the ROSA beta geo 26 gene trap strain leads to widespread expression of β-galactosidase in mouse embryos and hematopoietic cells. Proc. Natl. Acad. Sci. USA 94, 3789–3794 ( 1997).

    Article  CAS  Google Scholar 

  11. Morrison, S.J., Shah, N.M. & Anderson, D.J. Regulatory mechanisms in stem cell biology . Cell 88, 287–298 (1997).

    Article  CAS  Google Scholar 

  12. Spangrude, G.J., Heimfeld, S. & Weissman, I.L. Purification and characterization of mouse hematopoietic stem cells. Science 241, 58–62 (1988).

    Article  CAS  Google Scholar 

  13. Ikuta, K. & Weissman, I.L. Evidence that hematopoietic stem cells express mouse c-kit but do not depend on steel factor for their generation. Proc. Natl. Acad. Sci. USA 89, 1502–1506 (1992).

    Article  CAS  Google Scholar 

  14. Uchida, N. & Weissman, I.L. Searching for hematopoietic stem cells: evidence that Thy-1.1lo Lin- Sca-1+ cells are the only stem cells in C57BL/Ka-Thy-1.1 bone marrow. J. Exp. Med. 175, 175–184 (1992).

    Article  CAS  Google Scholar 

  15. Weissman, I.L. Stem cells, clonal progenitors, and commitment to the three lymphocyte lineages: T, B, and NK cells. Immunity 1, 529– 531 (1994).

    Article  CAS  Google Scholar 

  16. Smith, L.G., Weissman, I.L. & Heimfeld, S. Clonal analysis of hematopoietic stem-cell differentiation in vivo. Proc. Natl. Acad. Sci. USA 88, 2788–2792 (1991).

    Article  CAS  Google Scholar 

  17. Morrison, S.J., Wandycz, A.M., Hemmati, H.D., Wright, D.E. & Weissman, I.L. Identification of a lineage of multipotent hematopoietic progenitors. Development 124, 1929–1939 ( 1997).

    CAS  PubMed  Google Scholar 

  18. Uchida, N. Characterization of mouse hematopoietic stem cells. Ph.D. thesis, Stanford University, Stanford, California 152–213 (1992).

  19. van Ewijk, W., van Soest, P.L. & van den Engh, G.J. Fluorescence analysis and anatomic distribution of mouse T lymphocyte subsets defined by monoclonal antibodies to the antigens Thy-1, Lyt-1, Lyt-2, and T-200. J. Immunol. 127, 2594–2604 ( 1981).

    CAS  PubMed  Google Scholar 

  20. Ledbetter, J.A. & Herzenberg, L.A. Xenogeneic monoclonal antibodies to mouse lymphoid differentiation antigens. Immunol. Rev. 47, 63–90 (1979).

    Article  CAS  Google Scholar 

  21. Shizuru, J.A., Jerabek, L., Edwards, C.T. & Weissman, I.L. Transplantation of purified hematopoietic stem cells: requirements for overcoming the barriers of allogeneic engraftment. Biol. Blood Marrow Transplant. 2, 3–14 (1996 ); erratum: 3, 50.

    CAS  PubMed  Google Scholar 

  22. Talbot, N.C. et al. Colony isolation and secondary culture of fetal porcine hepatocytes on STO feeder cells. In Vitro Cell Dev. Biol. Anim. 30A, 851–858 (1994).

    Article  CAS  Google Scholar 

  23. Overturf, K., al-Dhalimy, M., Ou, C.N., Finegold, M. & Grompe, M. Serial transplantation reveals the stem-cell-like regenerative potential of adult mouse hepatocytes. Am. J. Pathol. 151, 1273–1280 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Braun, K.M., Degen, J.L. & Sandgren, E.P. Hepatocyte transplantation in a model of toxin-induced liver disease: Variable therapeutic effect during replacement of damaged parenchyma by donor cells. Nature Med. 6, 320– 326 (2000).

    Article  CAS  Google Scholar 

  25. Uchida, N. et al. Hydroxyurea can be used to increase mouse c-kit+Thy-1. 1(lo)Lin-/loSca- 1(+) hematopoietic cell number and frequency in cell cycle in vivo. Blood 90, 4354–4362 ( 1997).

    CAS  PubMed  Google Scholar 

  26. Taniguchi, H., Toyoshima, T., Fukao, K. & Nakauchi, H. Presence of hematopoietic stem cells in the adult liver. Nature Med. 2, 198–203 ( 1996).

    Article  CAS  Google Scholar 

  27. Ferrari, G. et al. Muscle regeneration by bone marrow-derived myogenic progenitors . Science 279, 1528–1530 (1998); erratum, 281, 923.

    Article  CAS  Google Scholar 

  28. Gussoni, E. et al. Dystrophin expression in the mdx mouse restored by stem cell transplantation. Nature 401, 390– 394 (1999).

    CAS  Google Scholar 

  29. Kopen, G.C., Prockop, D.J. & Phinney, D.G. Marrow stromal cells migrate throughout forebrain and cerebellum, and they differentiate into astrocytes after injection into neonatal mouse brains. Proc. Natl. Acad. Sci. USA 96 , 10711–10716 (1999).

    Article  CAS  Google Scholar 

  30. Pereira, R.F. et al. Cultured adherent cells from marrow can serve as long-lasting precursor cells for bone, cartilage, and lung in irradiated mice. Proc. Natl. Acad. Sci. USA 92, 4857– 4861 (1995).

    Article  CAS  Google Scholar 

  31. Weissman, I.L. Stem cells: units of development, units of regeneration, and units in evolution . Cell 100, 157–168 (2000).

    Article  CAS  Google Scholar 

  32. Bjornson, C.R., Rietze, R.L., Reynolds, B.A., Magli, M.C. & Vescovi, A.L. Turning brain into blood: a hematopoietic fate adopted by adult neural stem cells in vivo. Science 283, 534– 537 (1999).

    Article  CAS  Google Scholar 

  33. Jackson, K.A., Mi, T. & Goodell, M.A. Hematopoietic potential of stem cells isolated from murine skeletal muscle. Proc. Natl. Acad. Sci. USA 96, 14482–14486 (1999).

    Article  CAS  Google Scholar 

  34. Sell, S. & Ilic, Z. in Liver Stem Cells (Landes, Austin, Texas, USA) Chapman and Hall, New York, New York, 29 –63 (1997).

    Google Scholar 

  35. Theise, N.D. et al. Liver from bone marrow in humans. Hepatology 32, 11–16 (2000).

    Article  CAS  Google Scholar 

  36. Alison, M.R. et al. Hepatocytes from non-hepatic adult stem cells. Nature 406, 257 (2000).

    Article  CAS  Google Scholar 

  37. Baum, C.M., Weissman, I.L., Tsukamoto, A.S., Buckle, A.M. & Peault, B. Isolation of a candidate human hematopoietic stem-cell population. Proc. Natl. Acad. Sci. USA 89, 2804–2808 ( 1992).

    Article  CAS  Google Scholar 

  38. Overturf, K., Al-Dhalimy, M., Finegold, M. & Grompe, M. The repopulation potential of hepatocyte populations differing in size and prior mitotic expansion. Am. J. Pathol. 155, 2135–2143 (1999).

    Article  CAS  Google Scholar 

  39. Strom, S.C., Chowdhury, J.R. & Fox, I.J. Hepatocyte transplantation for the treatment of human disease. Semin. Liver Dis. 19, 39– 48 (1999).

    Article  CAS  Google Scholar 

  40. Ritt, A. National Bone Marrow Donor Registry to begin recruiting in general population this summer. J. Am. Med. Assoc. 259, 3099 –3101 (1988).

    Article  CAS  Google Scholar 

  41. Murata, M. et al. Unrelated bone marrow transplantation from the National Marrow Donor Program. Int. J. Hematol. 66, 239– 243 (1997).

    Article  CAS  Google Scholar 

  42. Carella, A.M., Champlin, R., Slavin, S., McSweeney, P. & Storb, R. Mini-allografts: ongoing trials in humans. Bone Marrow Transplant. 25, 345–350 (2000).

    Article  CAS  Google Scholar 

  43. Hale, D.A., Gottschalk, R., Umemura, A., Maki, T. & Monaco, A.P. Establishment of stable multilineage hematopoietic chimerism and donor-specific tolerance without irradiation. Transplantation 69, 1242–1251 (2000).

    Article  CAS  Google Scholar 

  44. Nolan, G.P., Fiering, S., Nicolas, J.F. & Herzenberg, L.A. Fluorescence-activated cell analysis and sorting of viable mammalian cells based on beta-D-galactosidase activity after transduction of Escherichia coli lacZ. Proc. Natl. Acad. Sci. USA 85, 2603–2607 (1988).

    Article  CAS  Google Scholar 

  45. MacGregor, G.R., Mogg, A.E., Burke, J.F. & Caskey, C.T. Histochemical staining of clonal mammalian cell lines expressing E. coli beta galactosidase indicates heterogeneous expression of the bacterial gene. Somat. Cell Mol. Genet. 13, 253–265 (1987).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank L. Jerabek for help with the mice, A. Tsukamoto for review of the manuscript, M. Masek for optimizing staining protocols and M. Ferraz for animal care. This work was supported in part by the National Institutes of Health (I.L.W and M.G.) and the American Liver Foundation (X.W).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric Lagasse.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lagasse, E., Connors, H., Al-Dhalimy, M. et al. Purified hematopoietic stem cells can differentiate into hepatocytes in vivo. Nat Med 6, 1229–1234 (2000). https://doi.org/10.1038/81326

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/81326

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing