Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Retinitis pigmentosa: rod photoreceptor rescue by a calcium-channel blocker in the rd mouse

Abstract

Retinitis pigmentosa is an inherited degenerative disease of photoreceptors leading to blindness. A well-characterized model for this disease is provided by the retinal degeneration mouse, in which the gene for the rod cGMP phosphodiesterase is mutated, as in some affected human families. We report that D-cis-diltiazem, a calcium-channel blocker that also acts at light-sensitive cGMP-gated channels, rescued photoreceptors and preserved visual function in the retinal degeneration mouse. The long record of diltiazem prescription in cardiology should facilitate the design of clinical trials for some forms of retinitis pigmentosa.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Rod cell rescue in diltiazem-treated rd mice.
Figure 2: Quantification of diltiazem-induced rod cell rescue in flat-mounted retinae of rd mice.
Figure 3: Diltiazem-induced photoreceptor rescue in retinal sections of rd mice.
Figure 4: Photoreceptor numbers and histology of retinal sections from diltiazem-treated rd mice.
Figure 5: ERGs after diltiazem treatment in rd mice and diltiazem injection in wild-type C57 mice.

Similar content being viewed by others

References

  1. Berson, E.L. Retinitis pigmentosa: Unfolding its mystery. Proc. Natl Acad. Sci. USA 93, 4526–4528 (1996).

    Article  CAS  Google Scholar 

  2. Berson, E.L. et al. A randomized trial of vitamin A and vitamin E supplementation for retinitis pigmentosa. Arch. Ophthalmol. 111, 761–772 (1993).

    Article  CAS  Google Scholar 

  3. Bennett J. et al. Photoreceptor cell rescue in retinal degeneration (rd) mice by in vitro gene therapy. Nature Med. 2, 649–654 (1996).

    Article  CAS  Google Scholar 

  4. LaVail, M.M. et al. Protection of mouse photoreceptors by survival factors in retinal degenerations. Invest. Ophthal. Vis. Sci. 39, 592–602 (1998).

    CAS  PubMed  Google Scholar 

  5. Silverman, M.S. & Hughes, S.E. Tranplantation of photoreceptors to light-damaged retinas. Invest. Ophththalmol. Vis. Sci. 30, 1684–1690 (1989).

    CAS  Google Scholar 

  6. Gouras, P., Du, J., Kjeldbye, H., Yamamoto, S. & Zack, D.J. Long-term photoreceptor transplants in dystrophic and normal mouse retina. Invest. Ophthalmol. Vis. Sci. 35, 3145–3153 (1994).

    CAS  PubMed  Google Scholar 

  7. Farber, D.B., Flannery, J.G. & Bowes-Rickman, C. in Progress in Retinal and Eye Research vol. 13 (eds. Osborne, N.N. & Chader, G.J.) 31–62 (Pergamon, Oxford, 1994).

    Google Scholar 

  8. Bowes, C., Li, T., Danciger, M., Baxter, L.C., Applebury, M.L. & Farber, D. Retinal degeneration in the rd mouse is caused by a defect in the β-subunit of rod cGMP-phosphodiesterase. Nature 347, 677–680 (1990).

    Article  CAS  Google Scholar 

  9. McLaughlin, M.E., Sandberg, M.A., Berson, E.L. & Drya, T.P. Recessive mutations in the gene encoding the β-subunit of rod phosphodiesterase in patients with retinitis pigmentosa. Nature Genet. 4, 130–133 (1993).

    Article  CAS  Google Scholar 

  10. Farber, D.B. & Lolley, R. N. Cyclic guanosine monophosphate : Elevation in degenerating photoreceptor cells of the C3H mouse retina. Science 186, 449–451 (1974).

    Article  CAS  Google Scholar 

  11. Lolley, R.N., Farber, D.B., Rayborn, M.E. & Hollyfield, J.G. Cyclic GMP accumulation causes degeneration of photoreceptor cells: simulation of an inherited disease. Science 196, 664–666 (1977).

    Article  CAS  Google Scholar 

  12. Ulshafer, R.J., Garcia, C.A. & Hollyfield, J.G. Sensitivity of photoreceptors to elevated levels of cGMP in the human retina. Invest. Ophthalmol. Vis. Sci. 19, 1326–1241 (1980).

    Google Scholar 

  13. Cobbs, W.H. & Pugh, E.N. Jr. Cyclic GMP can increase rod outer-segment light sensitive current 10-fold without delay of excitation. Nature 313, 585–587 (1985).

    Article  CAS  Google Scholar 

  14. Fesenko, E.E., Kolesnikov, S.S. & Lyubarsky, A.L. Induction by cyclic GMP of a cationic conductance in plasma membrane of retinal rod outer segment. Nature 313, 310–313 (1985).

    Article  CAS  Google Scholar 

  15. Lee, K.S. & Tsien, R.W. Mechanism of calcium channel blockade by verapamil, D600, diltiazem and nitrendipine in single dialysed heart cells. Nature 302, 790–794 (1983).

    Article  CAS  Google Scholar 

  16. Koch, K.W. & Kaupp, U.B. Cyclic GMP directly regulates a cationic conductance in membranes of bovine rods by a cooperative mechanism. J. Biol. Chem. 260, 6788–6800 (1985).

    CAS  PubMed  Google Scholar 

  17. Noell, W.K. Differentiation, metabolic organization, and viability of the visual cells. Arch. Ophthal. 60, 702–731 (1958).

    Article  CAS  Google Scholar 

  18. Sahly, I. et al. Calcium channel blockers inhibit retinal degeneration in the retinal-degeneration-B mutant of Drosophila. Proc. Natl Acad. Sci. USA 89, 435–439 (1992).

    Article  CAS  Google Scholar 

  19. Stern, J.H., Kaupp, U.B. & MacLeish, P.R. Control of the light regulated current in rod photoreceptors by cyclic GMP, calcium, and l-cis-diltiazem. Proc. Natl Acad. Sci. USA 83, 1163–1167 (1986).

    Article  CAS  Google Scholar 

  20. Schmitz, Y. & Witkovsky, P. Dependence of photoreceptor glutamate release on a dihydropyridine-sensitive calcium channel. Neuroscience 78, 1209–1216 (1997).

    Article  CAS  Google Scholar 

  21. Buckley, M.M.T., Grant, S.M., Goa, K.L., McTavish, D. & Sorkin, E.M. Diltiazem A reappraisal of its pharmacological properties and therapeutic use. Drugs 39, 757–806 (1990).

    Article  CAS  Google Scholar 

  22. Peachley, N.S., Goto, Y., Al-Ubaidi, M.R. & Naash, M.I. Properties of the mouse cone-mediated electroretinogram during light adaptation. Neurosci. Lett. 162, 9–11 (1993).

    Article  Google Scholar 

  23. Mohand-Said, S. et al. Photoreceptor transplants increase host cone survival in the retinal degeneration (rd) mouse. Ophthalmic Res. 29, 290–297 (1997).

    Article  CAS  Google Scholar 

  24. Mohand-Said, S. et al. Normal retina releases a diffusible factor stimulating cone survival in the retinal degeneration mouse. Proc. Natl. Acad. Sci. USA 95, 8357–8362 (1998).

    Article  CAS  Google Scholar 

  25. Yu, W. P., Grunwald, M. & Yau, K. W. Molecular cloning, functional expression and chromosomal localization of a human homolog of the cyclic nucleotide-gated ion channel of retinal cone photoreceptors. FEBS Lett. 393, 211–215 (1996).

    Article  CAS  Google Scholar 

  26. Harman, J.G., Limbird, L.E., Molinoff, P.B., Ruddon, R.W. & Gilman, A.G. in Goodman & Gilman's Pharmacological Basis of Therapeutics 9th edn. (MacGraw–Hill, New York, 1996).

    Google Scholar 

  27. Budavari, S., O'Neil M.J., Smith A., Heckelman, P.E. & Kinneary, J.F. in The Merck Index 12th edn. 451(Merck, Whitehouse Station, New Jersey, 1996).

    Google Scholar 

  28. Hicks, D. & Molday, R.S. Differential immunogold-dextran labeling of bovine and frog rod and cone cells using monoclonal antibodies against bovine rhodopsin. Exp. Eye Res. 42, 55–71 (1986).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank D. Hicks for suggestions and P. Bos and R. Bury for technical assistance. This work was supported by Fédération des Aveugles de France, AFRP/retina-France, ADRET-Alsace and Fondation de l'Avenir and Hopitaux Universitaires de Strasbourg.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Serge Picaud.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Frasson, M., Sahel, J., Fabre, M. et al. Retinitis pigmentosa: rod photoreceptor rescue by a calcium-channel blocker in the rd mouse. Nat Med 5, 1183–1187 (1999). https://doi.org/10.1038/13508

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/13508

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing