Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Transient renewal of thymopoiesis in HIV-infected human thymic implants following antiviral therapy

Abstract

Stem cell gene therapy strategies for AIDS require that differentiation-inducing stromal elements of HIV-infected individuals remain functionally intact to support the maturation of exogenous progenitor cells into mature CD4+ cells. To investigate the feasibility of stem cell reconstitution strategies in AIDS, we used the SCID-hu mouse to examine the ability of HIV-infected CD4+ cell-depleted human thymic implants to support renewed thymopoiesis. Here we report that following treatment of these implants with antiretroviral drugs, new thymopoiesis is initiated. This suggests that antiviral therapies might allow de novo production of T lymphocytes and provides support for the concept of therapeutic strategies aimed at reconstitution of the peripheral CD4+ T-cell compartment.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Ho, D.D. et al. Rapid turnover of plasma virions and CD4 lymphocytes in HIV-1 infection. Nature 373, 123–126 (1995).

    Article  CAS  PubMed  Google Scholar 

  2. Wei, X. et al. Viral dynamics in human immunodeficiency virus type 1 infection. Nature 373, 117–122 (1995).

    Article  CAS  PubMed  Google Scholar 

  3. Papiernik, M. et al. Thymic abnormalities in fetuses aborted from human immunodeficiency virus type 1 seropositive women. Pediatrics 89, 297–301 (1992).

    CAS  PubMed  Google Scholar 

  4. Schuurman, H.J. et al. The thymus in acquired immunodeficiency syndrome: Comparison with other types of immunodeficiency diseases and presence of components in human immunodeficiency virus type 1. Am. J. Pathol. 134, 1329–1338 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Grody, W., Fligiel, S. & Naeim, F. Thymus involution in the acquired immunodeficiency syndrome. Am. J. Clin. Pathol. 84, 85–95 (1985).

    Article  CAS  PubMed  Google Scholar 

  6. Joshi, V.V. et al. Thymus biopsy in children with acquired immunodeficiency syndrome. Arch. Pathol. Lab. Med. 110: 837–842 (1986).

    CAS  PubMed  Google Scholar 

  7. Rosenzweig, M., Clark, D.P. & Gaulton, G.N. Selective thymocyte depletion in neonatal HIV-1 thymic infection. AIDS 7, 1601–1605 (1993).

    Article  CAS  PubMed  Google Scholar 

  8. McCune, J.M. et al. The SCID-hu mouse: Murine model for the analysis of human hematolymphoid differentiation and function. Science 241, 1632–1639 (1988).

    Article  CAS  PubMed  Google Scholar 

  9. Namikawa, R., Weilbaecher, K.N., Kaneshima, H., Yee, E.J. & McCune, J.M. Long-term human hematopoiesis in the SCID-hu mouse. J. Exp. Med. 172, 1055–1063 (1990).

    Article  CAS  PubMed  Google Scholar 

  10. Aldrovandi, G.M. et al. HIV-1 infection of the SCID-hu mouse: An animal model for virus pathogenesis. Nature 363, 732–736 (1993).

    Article  CAS  PubMed  Google Scholar 

  11. Bonyhadi, M.L. et al. HIV induces thymus depletion in vivo. Nature 363, 728–736 (1993).

    Article  CAS  PubMed  Google Scholar 

  12. Stanley, S.K. et al. Human immunodeficiency virus infection of the human thymus and disruption of the thymic microenvironment in the SCID-hu mouse. J. Exp. Med. 178, 1151–1163 (1993).

    Article  CAS  PubMed  Google Scholar 

  13. Kollmann, T.R. et al. Disseminated human immunodeficiency virus 1 (HIV-1) infection in SCID-hu mice after peripheral inoculation with HIV-1. J. Exp. Med. 179, 513–522 (1994).

    Article  CAS  PubMed  Google Scholar 

  14. Akkina, R.K., Rosenblatt, J.D., Campbell, A.G., Chen, I.S.Y. & Zack, J.A. Modeling human stem Cell gene therapy in the SCID-hu mouse. Blood 84, 1393–1398 (1994).

    CAS  PubMed  Google Scholar 

  15. An, D.S. et al. High-efficiency gene transduction of human T-Cell progenitors. J. Virol. 71, 1397–1404 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Jamieson, B.D. et al. Requirement of HIV-1 nef for in vivo replication and pathogenesis. J. Virol. 68, 3478–3485 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Jamieson, B.D., Pang, S., Aldrovandi, G.M., Zha, J. & Zack, J.A. In vivo pathogenic properties of two clonal human immunodeficiency virus type 1 isolates. J. Virol. 69, 6259–6264 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Aldrovandi, G.M. & Zack, J.A. Replication and pathogenicity of human immunodeficiency virus type 1 accessory gene mutants in SCID-hu mice. J. Virol. 70, 1505–1511 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Jamieson, B.D., Uittenbogaart, C.H., Schmid, I. & Zack, J.A. High viral burden and rapid CD4+ Cell depletion in HIV-1-infected SCID-hu mice suggest direct viral killing of thymocytes in vivo. J. Virol. (in the press).

  20. Kaneshima, H. et al. Human immunodeficiency virus infection of human lymph nodes in the SCID-hu mouse. Proc. Natl. Acad. Sci. USA 88, 4523–4527 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. McCune, J.M., Namikawa, R., Shih, C.-C., Rabin, L. & Kaneshima, H. Suppression of HIV infection in AZT-treated SCID-hu mice. Science 247, 564–566 (1990).

    Article  CAS  PubMed  Google Scholar 

  22. Zack, J.A. et al. HIV-1 entry into quiescent primary lymphocytes: Molecular analysis reveals a labile, latent viral structure. Cell 61, 213–222 (1990).

    Article  CAS  PubMed  Google Scholar 

  23. Kaplan, A.H. et al. Partial inhibition of human immunodeficiency virus type 1 protease results in aberrant virus assembly and the formation of noninfectious particles. J. Virol. 67, 4050–4055 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Jaskolski, M. et al. Structure at 2.5-Å resolution of chemically synthesized human immunodeficiency virus type 1 protease complexed with a hydroxyethylene-based inhibitor. Biochemistry 30, 1600–1609 (1991).

    Article  CAS  PubMed  Google Scholar 

  25. Lech, W.J. et al. In vivo sequence diversity of the protease of the human immunodeficiency virus type 1: Presence of protease inhibitor resistant variants in untreated subjects. J. Virol. 70, 2038–2045 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Kaplan, A.H. et al. Selection of multiple HIV-1 variants with decreased sensitivity to an inhibitor of the viral protease. Proc. Natl. Acad. Sci. USA 91, 5597–5601 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Ho, D.D. et al. Characterization of human immunodeficiency virus type 1 variants with increased resistance to a C2-symmetric protease inhibitor. J. Virol. 68, 2016–2020 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Autran, B. et al. Positive effects of combined antiretroviral therapy on CD4+ T-Cell homeostasis and function in advanced HIV disease. Science 27, 112–116 (1997).

    Article  Google Scholar 

  29. Sato, A. et al. A simple and rapid method for preliminary evaluation of in vivo efficacy of anti-HIV compounds in mice. Antiviral Res. 27, 151–163 (1995).

    Article  CAS  PubMed  Google Scholar 

  30. Vacca, J.P. et al. L-735,524: An orally bioavailable human immunodeficiency virus type 1 protease inhibitor. Proc. Natl. Acad. Sci. USA 91, 4096–4100 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Withers-Ward, E., Amado, R., Koka, P. et al. Transient renewal of thymopoiesis in HIV-infected human thymic implants following antiviral therapy. Nat Med 3, 1102–1109 (1997). https://doi.org/10.1038/nm1097-1102

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm1097-1102

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing