GLUT4 heterozygous knockout mice develop muscle insulin resistance and diabetes

Abstract

GLUT4, the insulin-responsive glucose transporter, plays an important role in postprandial glucose disposal. Altered GLUT4 activity is suggested to be one of the factors responsible for decreased glucose uptake in muscle and adipose tissue in obesity and diabetes. To assess the effect of GLUT4 expression on whole-body glucose homeostasis, we disrupted the murine GLUT4 gene by homologous recombination. Male mice heterozygous for the mutation (GLUT+/−) exhibited a decrease in GLUT4 expression in adipose tissue and skeletal muscle. This decrease in GLUT4 expression did not result in obesity but led to increased serum glucose and insulin, reduced muscle glucose uptake, hypertension, and diabetic histopathologies in the heart and liver similar to those of humans with non-insulin-dependent diabetes mellitus (NIDDM). The male GLUT4+/− mice represent a good model for studying the development of NIDDM without the complications associated with obesity.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1

    DeFronzo, R.A. The triumvirate: β-cell, muscle, liver: A collusion responsible for NIDDM (Lilly Lecture 1987). Diabetes 37, 667–687 (1988).

    CAS  Article  Google Scholar 

  2. 2

    Bennett, P.H. Epidemiology of diabetes mellitus. in Diabetes Mellitus: Theory and Practice, 4th edn. (eds. Rifkin, H. & Porte, D., Jr.) 357–377 (Elsevier Science, New York, 1991).

    Google Scholar 

  3. 3

    Mueckler, M. Facilitate glucose transporters. Eur. J. Biochem. 219, 713–725 (1994).

    CAS  Article  Google Scholar 

  4. 4

    Wright, E.W., Turk, E., Zabel, B., Mundilos, S. & Dyer, J. Molecular genetics of intestinal glucose transport. J. Clin. Invest. 88, 1435–1440 (1991).

    CAS  Article  Google Scholar 

  5. 5

    Charron, M.J., Brosius, F.C., III, Alper, S.L., & Lodish, H.F., A glucose transport protein expressed predominantly in insulin-responsive tissues. Proc. Natl. Acad. Sci. USA 86, 2535–2539 (1989).

    CAS  Article  Google Scholar 

  6. 6

    DeFronzo, R.A. et al. The effect of insulin on the disposal of intravenous glucose: Results from indirect calorimetry and hepatic and femoral venous catheterization. Diabetes 30, 1000–1007 (1981).

    CAS  Article  Google Scholar 

  7. 7

    Hirshman, M.F., Goodyear, L.J., Wardzala, L.J., Horton, E.D. & Horton, E.S. Identification of an intracellular pool of glucose transporters from basal and insulin-stimulated rat skeletal muscle. J. Biol. Chem. 265, 987–991 (1990).

    CAS  PubMed  Google Scholar 

  8. 8

    Klip, A. et al. Recruitment of GLUT4 glucose transporters by insulin in diabetic rat skeletal muscle. Biochem. Biophys. Res. Commun. 172, 728–736 (1990).

    CAS  Article  Google Scholar 

  9. 9

    Slot, J.W., Geuze, H.J., Gigengack, S., James, D.E. & Lienhard, G.E. Translocation of the glucose transporter GLUT4 in cardiac myocytes of the rat. Proc. Natl. Acad. Sci. USA 88, 7815–7819 (1991).

    CAS  Article  Google Scholar 

  10. 10

    Bonadonna, R.C. et al. Glucose transport in human skeletal muscle: The in vivo response to insulin. Diabetes 42, 191–198 (1993).

    CAS  Article  Google Scholar 

  11. 11

    Chan, T.M. & Tatoyan, A. Glucose transport and metabolism in the perfused hindquarters of lean and obese-hyperglycemic (db/db) mice: Effects of insulin and electrical stimulation. Biochim. Biophys. Acta 798, 325–332 (1984).

    CAS  Article  Google Scholar 

  12. 12

    Penicaud, L. et al. Development of obesity in Zucker rats: Early insulin resistance in muscles but normal sensitivity in white adipose tissue. Diabetes 36, 626–631 (1987).

    CAS  Article  Google Scholar 

  13. 13

    Sherman, W.M., Katz, A.L., Cutler, C.L., Withers, R.T. & Ivy, J.L. Glucose transport: Locus of muscle insulin resistance in obese Zucker rats. Am. J. Physiol. 255, E374–E382 (1988).

    CAS  PubMed  Google Scholar 

  14. 14

    Zierath, J.R. et al. Insulin action on glucose transport and plasma membrane GLUT4 content in skeletal muscle from patients with NIDDM. Diabetologia 39, 1180–1189 (1996).

    CAS  Article  Google Scholar 

  15. 15

    Kahn, B.B. Alterations in glucose transporter expression and function in diabetes: Mechanisms for insulin resistance. J. Cell Biochem. 48, 122–128 (1992).

    CAS  Article  Google Scholar 

  16. 16

    Katz, E.B., Stenbit, A.E., Hatton, K., DePinho, R. & Charron, M.J. Cardiac and adipose tissue abnormalities but not diabetes in mice deficient in GLUT4. Nature 377, 151–155 (1995).

    CAS  Article  Google Scholar 

  17. 17

    Coleman, D.L. Obese and diabetes: Two mutant genes causing diabetes-obesity syndromes in mice. Diabetologia 14, 141–148 (1978).

    CAS  Article  Google Scholar 

  18. 18

    Wyse, B.M. & Dulin, W.E. The influence of age and dietary conditions on diabetes in the db mouse. Diabetologia 6, 268–273 (1970).

    CAS  Article  Google Scholar 

  19. 19

    York, D.A., Steinke, J. & Bray, G.A. Hyperinsulinemia and insulin resistance in genetically obese rats. Metab. Clin. Exp. 21, 277–284 (1972).

    CAS  Article  Google Scholar 

  20. 20

    Factor, S.M., Minase, T. & Sonnenblick, E.H. Clinical and morphological features of human hypertensive-diabetic cardiomyopathy. Am. Heart J. 99, 446–458 (1980).

    CAS  Article  Google Scholar 

  21. 21

    Van Hoeven, K.H. & Factor, S.M. A comparison of the pathological spectrum of hypertensive, diabetic, and hypertensive-diabetic heart disease. Circulation 82, 848–855 (1990).

    CAS  Article  Google Scholar 

  22. 22

    Stenbit, A.E. et al. Diverse effects of Glut 4 ablation on glucose uptake and glycogen synthesis in red and white skeletal muscle. J. Clin. Invest. 98, 629–634 (1996).

    CAS  Article  Google Scholar 

  23. 23

    Bruning, J.C. et al. Development of a novel polygenic model of NIDDM in mice heterozygous for IR and IRS-1 null alleles. Cell 88, 561–572 (1997).

    CAS  Article  Google Scholar 

  24. 24

    De Meyts, P. The diabetogenes concept of NIDDM. in New Concepts in the Pathogenesis of NIDDM (eds. Ostenson, C.G. et al.) 89–100 (Plenum, New York, 1993).

    Google Scholar 

  25. 25

    Katz, E.B., Burcelin, R., Tsao, T.S., Stenbit, A.E. & Charron, M.J. The metabolic consequences of altered glucose transporter expression in transgenic mice. J. Mol. Med. 74, 639–652 (1996).

    CAS  Article  Google Scholar 

  26. 26

    Horton, E.S. & Jeanrenaud, B. Obesity and diabetes mellitus. in Diabetes Mellitus: Theory and Practice, 4th edn. (eds. Rifkin, H. & Porte, D., Jr.) 457–465 (Elsevier Science, New York, 1991).

    Google Scholar 

  27. 27

    Cushman, S.W. & Salans, L.B. Determinations of adipose cell size and number in suspensions of isolated rat and human adipose cells. J. Lipid Res. 19, 269–273 (1978).

    CAS  PubMed  Google Scholar 

  28. 28

    Kahn, B.B., Charron, M.J. & Lodish, H.F. Differential regulation of two glucose transporters in adipose cells from diabetic and insulin-treated diabetic rats. J. Clin. Invest. 84, 404–411 (1991).

    Article  Google Scholar 

  29. 29

    Ioffe, E. et al. WW6: An embryonic stem cell line with an inert genetic marker that can be traced in chimeras. Proc. Natl. Acad. Sci. USA 92, 7357–7361 (1995).

    CAS  Article  Google Scholar 

  30. 30

    Baldini, G., Holman, R., Charron, M.J. & Lodish, H.F. Insulin and nonhydrolyzable GTP analogs induce translocation of GLUT4 to the plasma membrane in alpha-toxin-permeabilized rat adipose cells. J. Biol Chem. 266, 4037–4040 (1991).

    CAS  PubMed  Google Scholar 

Download references

Author information

Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Stenbit, A., Tsao, T., Li, J. et al. GLUT4 heterozygous knockout mice develop muscle insulin resistance and diabetes. Nat Med 3, 1096–1101 (1997). https://doi.org/10.1038/nm1097-1096

Download citation

Further reading

Search

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing