Discovery of betulinic acid as a selective inhibitor of human melanoma that functions by induction of apoptosis


As a result of bioassay–guided fractionation, betulinic acid, a pentacyclic triterpene, was identified as a melanoma–specific cytotoxic agent. In follow–up studies conducted with athymic mice carrying human melanomas, tumour growth was completely inhibited without toxicity. As judged by a variety of cellular responses, antitumour activity was mediated by the induction of apoptosis. Betulinic acid is inexpensive and available in abundant supply from common natural sources, notably the bark of white birch trees. The compound is currently undergoing preciinicai development for the treatment or prevention of malignant melanoma.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.


  1. 1

    Ries, L.A., Hankey, B.S. & Edwards, B.K., Institutes of Health Publication No.902789 (Division of Cancer Prevention and Control, National Cancer Institute, Bethesda, MD, 1990).

  2. 2

    Brozena, S.J., Fenska, N.A. & Perez, I.R. Epidemiology of malignant melanoma, worldwide incidence, and etiologic factors. Semin. surg. Oncol. 9, 165–167 (1993).

  3. 3

    Boring, C.C., Squires, T.S., Tong, T. & Montgomery, S. Cancer statistics 1994. CA: Cancer J. Clinicians 44, 7–26 (1994).

  4. 4

    Comis, R.L. DTIC (NSC-45388) in malignant melanoma: A perspective. Cancer Treat. Rep. 60, 165–176 (1976).

  5. 5

    McClay, E.F. & McClay, M.E., Tamoxifen: Is it useful in the treatment of patients with metastatic melanoma? J. clin. Oncol. 12, 617–626 (1994).

  6. 6

    Mastrangelo, M.J. Controlled studies in chemotherapy for advanced melanoma. in Malignant Melanoma: Medical and Surgical Management (eds Lejeune, F., Chaudhuri, P.K. & Das Gupta, T.K.) 295–302 (McGraw-Hill Inc., New York, 1995).

  7. 7

    Richards, J.M., Ramming, K., Bitran, J.D., Doane, L.L. & Priest, E.R. Combination of chemotherapy and biological therapy for the treatment of melanoma. Clin. Res. 38, 844A (1990).

  8. 8

    Richards, J.M., Mehta, N., Ramming, K. & Skosey, P. Sequential chemoimmuno-therapy in the treatment of metastatic melanoma. J. clin. Oncol. 10, 1338–1343 (1992).

  9. 9

    Cragg, G.M. et al. Role of plants in the National Cancer Institute Drug Discovery and Development Program. in Human Medicinal Agents from Plants, ACS Symposium Series 534 (eds. Kinghom, A.D. & Balandrin, M.F.) 80–95 (American Chemical Society Books, Washington, DC, 1993).

  10. 10

    Wall, M.E. & Wani, M.C. Camptothecin and analogues: Synthesis, biological in vitro and in vivo activities and clinical possibilities. in Human Medicinal Agents from Plants, ACS Symposium Series 534 (eds. Kinghorn, A.D. & Balandrin, M.F.) 149–169 (American Chemical Society Books, Washington, DC, 1993).

  11. 11

    Thompson, H.J., Strange, R. & Schedin, P.J. Apoptosis in the genesis and prevention of cancer. Cancer Epidemiol. Biomarkers Prevent. 1, 597–602 (1992).

  12. 12

    Wyllie, A.H. The biology of cell death in tumours. Anticancer Res. 5, 131–136 (1985).

  13. 13

    Suffness, M. et al. The National Cooperative Natural Products Drug Discovery Group (NCDDG) and International Cooperative Biodiversity Group (ICBG) Programs. Int. J. Pharmacog. 33 (suppl.), 5–16 (1995).

  14. 14

    Cordell, G.A. et al. Novel strategies for the discovery of plant-derived anti-cancer agents. in Human Medicinal Agents from Plants, ACS Symposium Series 534 (eds. Kinghorn, A.D. & Balandrin, M.F.) 191–204 (American Chemical Society Books, Washington, DC, 1993).

  15. 15

    Pezzuto, J.M., Shieh, H.-L., Shaughnessy, E. & Beattie, C.W. Approaches for drug development in treatment of advanced melanoma. Semin. Oncol. 15, 578–588 (1988).

  16. 16

    Kingston, D.G.I. & Mujal, R.C. Plant anticancer agents. VIII. Constituents of Inga punctata. J. Nat. Prod. 41, 499–500 (1978).

  17. 17

    Sheth, K., Jolad, S., Wiedhopf, R. & Cole, J.R. Tumor-inhibitory agents from Hyptis emoryi (Labiatae). J. pharm. Sci. 61, 1819 (1972).

  18. 18

    Miles, D.H., Kokpol, U., Zalkow, L.H., Steindell, S.J. & Nabors, J.B. Tumor inhibitors I: Preliminary investigation of antitumor activity of Sarracenia flava. J. pharm. Sci. 63, 613–615 (1974).

  19. 19

    Trumbull, E.R., Bianchi, E., Eckert, D.J., Wiedhopf, R.M. & Cole, J.R. Tumor inhibitory agents from Vauquelinia corymbosa (Rosaceae). J. pharm. Sci. 65, 1407–1408 (1976).

  20. 20

    Sandberg, F., Dutschewska, H., Christov, V. & Spassov, S. Spondiathus preussii var. glaber Engler. Pharmaceutic screening of triterpenes. Acta Pharm. Suec. 24, 253–256 (1987).

  21. 21

    Walker, P.R., Kokileva, L., Leblanc, J. & Sikorska, M. Detection of initial stages of DNA fragmentation in apoptosis. BioTechniques 15, 1032–1040 (1993).

  22. 22

    Cohen, G.M. et al. Formation of large molecular weight fragments of DNA is a key committed step of apoptosis in thymocytes. J. Immun. 153, 507–516 (1994).

  23. 23

    O'Connell, M.M., Bentley, M.D., Campbell, C.S. & Cole, B.J.W. Betulin and lupeol in bark from four white-barked birches. Phytochemistry 27, 2175–2176 (1988).

  24. 24

    Ruzicka, L., Lamberton, A.H. & Christie, C.W., Zur Kenntnis der Triterpene. Oxydation des Betulin-Mono-Acetats mit Chromotrioxyd zu sauren Produkten. Helv. Chim. Acta 21, 1706–1717 (1938).

  25. 25

    Robertson, A., Suliman, G. & Owen, E.C. Polyterpenoid compounds. Part I. Betulic acid from Comus florida, L. J. chem. Soc. 1939, 1267–1273 (1939).

  26. 26

    Fujioka, T. et al. Anti-AIDS agents, 11. Betulinic acid and platanic acid as anti-HIV principles from Syzigium daviform and the anti-HIV activity of structurally related triterpenoids. J. Nat. Prod. 57, 243–247 (1994).

  27. 27

    Siddiqui, S., Hafeez, F., Begum, S. & Siddiqui, B.S., Oleanderol, a new pentacyclic triterpene from the leaves of Nerium oleander. J. Nat. Prod. 51, 229–233 (1988).

  28. 28

    Robinson, F. Jr. & Martel, H. Betulinic acid from Arbutus menziesii. Phytochemistry 9, 907–909 (1970).

  29. 29

    Sholichin, M., Yamasaki, K., Kasai, R. & Tanaka, O. 13C. Nuclear magnetic resonance of lupane-type triterpenes, lupeol, betulin and betulinic acid. Chem. Pharm. Bull. 28, 1006–1008 (1980).

  30. 30

    Likhitwitayawuid, K., Angerhofer, C.K., Cordell, G.A., Pezzuto, J.M. & Raungrungsi, N. Cytotoxic and antimalarial alkaloids from tubers of Stephania pierrei. J. Nat. Prod. 58, 1468–1478 (1993).

  31. 31

    Hotz, M.A., Gong, J., Traganos, F. & Darzynkiewicz, Z. Detection of apoptosis: Comparison of the assays of in situ DNA degradation and chromatin changes. Cytometry 15, 237–244 (1994).

  32. 32

    Waller, D.P., Zaneveld, L.J.D. & Fong, H.H.S. In vitro spermicidal activity of gossypol. Contraception 22, 183–187 (1980).

  33. 33

    Geran, R.I., Greenberg, N.H., Macdonald, M.M., Schumacker, A.M. & Abbott, B.J. Cancer Chemother. Rep. 3, 1–94 (1972).

  34. 34

    Studies conducted with laboratory animals were approved by the University of Illinois at Chicago Institutional Review Board and conform with NIH guidelines.

Download references

Author information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Pisha, E., Chai, H., Lee, I. et al. Discovery of betulinic acid as a selective inhibitor of human melanoma that functions by induction of apoptosis. Nat Med 1, 1046–1051 (1995).

Download citation

Further reading