Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Defective valves and abnormal mural cell recruitment underlie lymphatic vascular failure in lymphedema distichiasis

Abstract

Lymphatic vessels are essential for the removal of interstitial fluid and prevention of tissue edema. Lymphatic capillaries lack associated mural cells, and collecting lymphatic vessels have valves, which prevent lymph backflow. In lymphedema-distichiasis (LD), lymphatic vessel function fails because of mutations affecting the forkhead transcription factor FOXC2. We report that Foxc2−/− mice show abnormal lymphatic vascular patterning, increased pericyte investment of lymphatic vessels, agenesis of valves and lymphatic dysfunction. In addition, an abnormally large proportion of skin lymphatic vessels was covered with smooth muscle cells in individuals with LD and in mice heterozygous for Foxc2 and for the gene encoding lymphatic endothelial receptor, Vegfr3 (also known as Flt4). Our data show that Foxc2 is essential for the morphogenesis of lymphatic valves and the establishment of a pericyte-free lymphatic capillary network and that it cooperates with Vegfr3 in the latter process. Our results indicate that an abnormal interaction between the lymphatic endothelial cells and pericytes, as well as valve defects, underlie the pathogenesis of LD.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Late development of the lymphatic vasculature is abnormal in Foxc2−/− embryos.
Figure 2: Expression of Pdgfrb, Pdgfb, endoglin and collagen IV in the lymphatic vessels of Foxc2−/− embryos.
Figure 3: Compound Foxc2+/−;Vegfr3+/lacZ mice show a lymphatic phenotype similar to that of Foxc2−/− mice.
Figure 4: Abnormal lymphatic vascular function and agenesis of lymphatic valves in Foxc2−/− mice.
Figure 5: Expression pattern of Foxc2 in lymphatic vessels.
Figure 6: Effects of human FOXC2 mutations in vivo and in cell culture.

Similar content being viewed by others

References

  1. Irrthum, A., Karkkainen, M.J., Devriendt, K., Alitalo, K. & Vikkula, M. Congenital hereditary lymphedema caused by a mutation that inactivates VEGFR3 tyrosine kinase. Am. J. Hum. Genet. 67, 295–301 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Karkkainen, M.J. et al. Missense mutations interfere with VEGFR-3 signaling in primary lymphoedema. Nat. Genet. 25, 153–159 (2000).

    Article  CAS  PubMed  Google Scholar 

  3. Irrthum, A. et al. Mutations in the transcription factor gene SOX18 underlie recessive and dominant forms of hypotrichosis-lymphedema-telangiectasia. Am. J. Hum. Genet. 72, 1470–1478 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Fang, J. et al. Mutations in FOXC2 (MFH-1), a forkhead family transcription factor, are responsible for the hereditary lymphedema-distichiasis syndrome. Am. J. Hum. Genet. 67, 1382–1388 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Finegold, D.N. et al. Truncating mutations in FOXC2 cause multiple lymphedema syndromes. Hum. Mol. Genet. 10, 1185–1189 (2001).

    Article  CAS  PubMed  Google Scholar 

  6. Bell, R. et al. Analysis of lymphoedema-distichiasis families for FOXC2 mutations reveals small insertions and deletions throughout the gene. Hum. Genet. 108, 546–551 (2001).

    Article  CAS  PubMed  Google Scholar 

  7. Brice, G. et al. Analysis of the phenotypic abnormalities in lymphoedema-distichiasis syndrome in 74 patients with FOXC2 mutations or linkage to 16q24. J. Med. Genet. 39, 478–483 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Iida, K. et al. Essential roles of the winged helix transcription factor MFH-1 in aortic arch patterning and skeletogenesis. Development 124, 4627–4638. (1997).

    CAS  PubMed  Google Scholar 

  9. Winnier, G.E., Hargett, L. & Hogan, B.L. The winged helix transcription factor MFH1 is required for proliferation and patterning of paraxial mesoderm in the mouse embryo. Genes Dev. 11, 926–940 (1997).

    Article  CAS  PubMed  Google Scholar 

  10. Winnier, G.E. et al. Roles for the winged helix transcription factors MF1 and MFH1 in cardiovascular development revealed by nonallelic noncomplementation of null alleles. Dev. Biol. 213, 418–431 (1999).

    Article  CAS  PubMed  Google Scholar 

  11. Kriederman, B.M. et al. FOXC2 haploinsufficient mice are a model for human autosomal dominant lymphedema-distichiasis syndrome. Hum. Mol. Genet. 12, 1179–11785 (2003).

    Article  CAS  PubMed  Google Scholar 

  12. Karkkainen, M.J. et al. Vascular endothelial growth factor C is required for sprouting of the first lymphatic vessels from embryonic veins. Nat. Immunol. 5, 74–80 (2004).

    Article  CAS  PubMed  Google Scholar 

  13. Ozerdem, U., Grako, K.A., Dahlin-Huppe, K., Monosov, E. & Stallcup, W.B. NG2 proteoglycan is expressed exclusively by mural cells during vascular morphogenesis. Dev. Dyn. 222, 218–227 (2001).

    Article  CAS  PubMed  Google Scholar 

  14. Lindahl, P., Johansson, B.R., Leveen, P. & Betsholtz, C. Pericyte loss and microaneurysm formation in PDGF-B-deficient mice. Science 277, 242–245 (1997).

    Article  CAS  PubMed  Google Scholar 

  15. Hellstrom, M., Kalen, M., Lindahl, P., Abramsson, A. & Betsholtz, C. Role of PDGF-B and PDGFR-β in recruitment of vascular smooth muscle cells and pericytes during embryonic blood vessel formation in the mouse. Development 126, 3047–3055 (1999).

    CAS  PubMed  Google Scholar 

  16. Bondjers, C. et al. Transcription profiling of platelet-derived growth factor-B-deficient mouse embryos identifies RGS5 as a novel marker for pericytes and vascular smooth Muscle cells. Am. J. Pathol. 162, 721–729 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Li, D.Y. et al. Defective angiogenesis in mice lacking endoglin. Science 284, 1534–1537 (1999).

    Article  CAS  PubMed  Google Scholar 

  18. Oliver, G. & Detmar, M. The rediscovery of the lymphatic system: old and new insights into the development and biological function of the lymphatic vasculature. Genes Dev. 16, 773–783 (2002).

    Article  CAS  PubMed  Google Scholar 

  19. Wigle, J.T. & Oliver, G. Prox1 function is required for the development of the murine lymphatic system. Cell 98, 769–778 (1999).

    Article  CAS  PubMed  Google Scholar 

  20. Wigle, J.T. et al. An essential role for Prox1 in the induction of the lymphatic endothelial cell phenotype. EMBO J. 21, 1505–1513 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Kaipainen, A. et al. Expression of the fms-like tyrosine kinase FLT4 gene becomes restricted to lymphatic endothelium during development. Proc. Natl. Acad. Sci. USA 92, 3566–3570 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Dumont, D.J. et al. Cardiovascular failure in mouse embryos deficient in VEGF receptor-3. Science 282, 946–949 (1998).

    Article  CAS  PubMed  Google Scholar 

  23. Saaristo, A. et al. Lymphangiogenic gene therapy with minimal blood vascular side effects. J. Exp. Med. 196, 719–730 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Kume, T., Jiang, H., Topczewska, J.M. & Hogan, B.L. The murine winged helix transcription factors, Foxc1 and Foxc2, are both required for cardiovascular development and somitogenesis. Genes Dev. 15, 2470–2482 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Kaestner, K.H. et al. Clustered arrangement of winged helix genes fkh-6 and MFH-1: possible implications for mesoderm development. Development 122, 1751–1758 (1996).

    CAS  PubMed  Google Scholar 

  26. Miura, N., Iida, K., Kakinuma, H., Yang, X.L. & Sugiyama, T. Isolation of the mouse (MFH-1) and human (FKHL 14) mesenchyme fork head-1 genes reveals conservation of their gene and protein structures. Genomics 41, 489–492. (1997).

    Article  CAS  PubMed  Google Scholar 

  27. Gnepp, D.R. & Green, F.H.Y. Scanning electron microscopic study of canine lymphatic vessels and their valves. Lymphology 13, 91–99 (1980).

    CAS  PubMed  Google Scholar 

  28. Kume, T., Deng, K. & Hogan, B.L. Murine forkhead/winged helix genes Foxc1 (Mf1) and Foxc2 (Mfh1) are required for the early organogenesis of the kidney and urinary tract. Development 127, 1387–1395 (2000).

    CAS  PubMed  Google Scholar 

  29. Gerhardt, H. & Betsholtz, C. Endothelial-pericyte interactions in angiogenesis. Cell Tissue Res. 314, 15–23 (2003).

    Article  PubMed  Google Scholar 

  30. Hirschi, K.K. & D'Amore, P.A. Pericytes in the microvasculature. Cardiovasc. Res. 32, 687–698 (1996).

    Article  CAS  PubMed  Google Scholar 

  31. Carmeliet, P. et al. Role of tissue factor in embryonic blood vessel development. Nature 383, 73–75 (1996).

    Article  CAS  PubMed  Google Scholar 

  32. Suri, C. et al. Requisite role of angiopoietin-1, a ligand for the TIE2 receptor, during embryonic angiogenesis. Cell 87, 1161–1169 (1997).

    Google Scholar 

  33. Yang, X. et al. Angiogenesis defects and mesenchymal apoptosis in mice lacking SMAD5. Development 126, 1571–1580 (1999).

    CAS  PubMed  Google Scholar 

  34. Liu, Y. et al. Edg-1, the G protein-coupled receptor for sphingosine-1-phosphate, is essential for vascular maturation. J. Clin. Invest. 106, 951–961 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Oh, S.P. et al. Activin receptor-like kinase 1 modulates transforming growth factor-β1 signaling in the regulation of angiogenesis. Proc. Natl. Acad. Sci. USA 97, 2626–2631 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Gale, N.W. et al. Angiopoietin-2 is required for postnatal angiogenesis and lymphatic patterning, and only the latter role is rescued by Angiopoietin-1. Dev. Cell 3, 411–423 (2002).

    Article  CAS  PubMed  Google Scholar 

  37. Petrova, T.V. et al. Lymphatic endothelial reprogramming of vascular endothelial cells by the Prox-1 homeobox transcription factor. EMBO J. 21, 4593–4599 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Hirakawa, S. et al. Identification of vascular lineage-specific genes by transcriptional profiling of isolated blood vascular and lymphatic endothelial cells. Am. J. Pathol. 162, 575–586 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Yang, X.L., Matsuura, H., Fu, Y., Sugiyama, T. & Miura, N. MFH-1 is required for bone morphogenetic protein-2-induced osteoblastic differentiation of C2C12 myoblasts. FEBS Lett. 470, 29–34 (2000).

    Article  CAS  PubMed  Google Scholar 

  40. Taylor, L.M. & Khachigian, L.M. Induction of platelet-derived growth factor B-chain expression by transforming growth factor-β involves transactivation by Smads. J. Biol. Chem. 275, 16709–16716 (2000).

    Article  CAS  PubMed  Google Scholar 

  41. Vajda, J. & Tomcsik, M. The structure of the valves of the lymphatic vessels. Acta Anat. 78, 521–531 (1971).

    Article  CAS  PubMed  Google Scholar 

  42. Veikkola, T. et al. Intrinsic versus microenvironmental regulation of lymphatic endothelial cell phenotype and function. FASEB J. 17, 2006–2013 (2003).

    Article  CAS  PubMed  Google Scholar 

  43. Karkkainen, M.J. et al. A model for gene therapy of human hereditary lymphedema. Proc. Natl. Acad. Sci. USA 98, 12677–12682 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Furumoto, T.A. et al. Notochord-dependent expression of MFH1 and PAX1 cooperates to maintain the proliferation of sclerotome cells during the vertebral column development. Dev. Biol. 210, 15–29 (1999).

    Article  CAS  PubMed  Google Scholar 

  45. Breiteneder-Geleff, S. et al. Angiosarcomas express mixed endothelial phenotypes of blood and lymphatic capillaries: podoplanin as a specific marker for lymphatic endothelium. Am. J. Pathol. 154, 385–394 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Laakkonen, P., Porkka, K., Hoffman, J.A. & Ruoslahti, E. A tumor-homing peptide with a targeting specificity related to lymphatic vessels. Nat. Med. 8, 751–755 (2002).

    Article  CAS  PubMed  Google Scholar 

  47. Wilkinson, D.G. (ed.). In Situ Hybridization: A Practical Approach (Oxford University Press, Oxford, UK, 1998).

    Google Scholar 

  48. Yamaguchi, T., Dumont, D., Conion, R., Breitman, M. & Rossant, J. Flk-1, an flt-related receptor tyrosine kinase is an early marker for endothelial cell precursors. Development 118, 489–498 (1993).

    CAS  PubMed  Google Scholar 

  49. Laitinen, M. et al. Adenovirus-mediated gene transfer to lower limb artery of patients with chronic critical leg ischemia. Hum. Gene Ther. 9, 1481–1486 (1998).

    Article  CAS  PubMed  Google Scholar 

  50. Lennon, G., Auffray, C., Polymeropoulos, M., Soares, M.B. The I.M.A.G.E. Consortium: an integrated molecular analysis of genomes and their expression. Genomics 33, 151–152 (1996).

    Article  CAS  PubMed  Google Scholar 

  51. Makinen, T. et al. Isolated lymphatic endothelial cells transduce growth, survival and migratory signals via the VEGF-C/D receptor VEGFR-3. EMBO. J. 20, 4762–4773 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank St George's and St Thomas' lymphedema consortium (S. Jeffery, J.R. Levick, A. Child, K.G. Burnand, S. Mansour, G. Brice, M. Sarfarazi and C. Sholto-Douglas-Vernon) for help with the patient material; C. Betsholtz and C. Bondjers for providing probes for Pdgfb, Pdgfrb, Rgs5 and for discussions; P. Laakkonen and M. Jeltsch for providing anti-Lyve-1 sera; U. Ozerdem for providing the NG2 antibodies; M. Kimak for the preparation of DNA from individuals with LD; and T. Tainola, A. Parsons, M. Helanterä, T. Laakkonen, S. Lampi, K. Makkonen, P. Hyvärinen and M. Miller for technical assistance. This study was supported by grants from Finnish Academy of Sciences, Finnish Cancer Organizations, Sigrid Juselius Foundation, Helsinki University Central Hospital, Finnish Cultural Foundation (T.K.), Paulo Foundation (T.K.), Emil Aaltonen Foundation (T.K.), Aarne Koskelo Foundation (T.K.) and by the EU Integrated Project LSHG-CT-2004-503573.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kari Alitalo.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

Analysis of lymphatic vasculature in adult Foxc2+/− mice. (PDF 310 kb)

Supplementary Fig. 2

Normal early development of lymphatic vasculature in Foxc2−/− mice. (PDF 506 kb)

Supplementary Fig. 3

Abnormal lymphatic patterning and PC/SMC recruitment in the skin of Foxc2−/− embryos. (PDF 295 kb)

Supplementary Fig. 4

Skin blood vessel development is normal in Foxc2−/− mice. (PDF 378 kb)

Supplementary Fig. 5

Mural cells associated with lymphatic vessels of Foxc2−/− mice express the PC marker NG2. (PDF 580 kb)

Supplementary Fig. 6

Pdgfb, Vegfr3, Prox1 and podoplanin are expressed in lymphatic endothelium lacking Foxc2. (PDF 320 kb)

Supplementary Fig. 7

Genetic relationship between Vegfr3 and Foxc2. (PDF 309 kb)

Supplementary Fig. 8

Expression pattern of FOXC2. (PDF 250 kb)

Supplementary Table 1

Use of antibodies against lymphatic endothelial specific markers in different experimental settings. (PDF 19 kb)

Supplementary Methods (PDF 26 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Petrova, T., Karpanen, T., Norrmén, C. et al. Defective valves and abnormal mural cell recruitment underlie lymphatic vascular failure in lymphedema distichiasis. Nat Med 10, 974–981 (2004). https://doi.org/10.1038/nm1094

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm1094

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing