Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Mouse model of Noonan syndrome reveals cell type– and gene dosage–dependent effects of Ptpn11 mutation

Abstract

Noonan syndrome is a common human autosomal dominant birth defect, characterized by short stature, facial abnormalities, heart defects and possibly increased risk of leukemia. Mutations of Ptpn11 (also known as Shp2), which encodes the protein-tyrosine phosphatase Shp2, occur in 50% of individuals with Noonan syndrome, but their molecular, cellular and developmental effects, and the relationship between Noonan syndrome and leukemia, are unclear. We generated mice expressing the Noonan syndrome–associated mutant D61G. When homozygous, the D61G mutant is embryonic lethal, whereas heterozygotes have decreased viability. Surviving Ptpn11D61G/+ embryos (50%) have short stature, craniofacial abnormalities similar to those in Noonan syndrome, and myeloproliferative disease. Severely affected Ptpn11D61G/+ embryos (50%) have multiple cardiac defects similar to those in mice lacking the Ras-GAP protein neurofibromin. Their endocardial cushions have increased Erk activation, but Erk hyperactivation is cell and pathway specific. Our results clarify the relationship between Noonan syndrome and leukemia and show that a single Ptpn11 gain-of-function mutation evokes all major features of Noonan syndrome by acting on multiple developmental lineages in a gene dosage–dependent and pathway-selective manner.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Generation of mice expressing D61G mutant Shp2.
Figure 2: Comparison of wild-type (WT) and D61G heterozygous and homozygous embryos.
Figure 3: Abnormal endocardial cushion homeostasis in Ptpn11D61G/D61G and Ptpn11D61G/+ embryos.
Figure 4: Short stature and facial dysmorphia in Ptpn11D61G/+ mice.
Figure 5: Ptpn11D61G/+ mice develop myeloproliferative syndrome.
Figure 6: Cell context–dependent enhancement of Erk activation by D61G mutant of Shp2.

References

  1. Noonan, J.A. Hypertelorism with Turner phenotype. A new syndrome with associated congenital heart disease. Am. J. Dis. Child. 116, 373–380 (1968).

    Article  CAS  PubMed  Google Scholar 

  2. Nora, J.J., Nora, A.H., Sinha, A.K., Spangler, R.D. & Lubs, H.A. The Ullrich-Noonan syndrome (Turner phenotype). Am. J. Dis. Child. 127, 48–55 (1974).

    CAS  PubMed  Google Scholar 

  3. Allanson, J.E. Noonan syndrome. J. Med. Genet. 24, 9–13 (1987).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Noonan, J.A. Noonan syndrome. An update and review for the primary pediatrician. Clin. Pediatr. (Phila.) 33, 548–555 (1994).

    Article  CAS  Google Scholar 

  5. Marino, B., Digilio, M.C., Toscano, A., Giannotti, A. & Dallapiccola, B. Congenital heart diseases in children with Noonan syndrome: an expanded cardiac spectrum with high prevalence of atrioventricular canal. J. Pediatr. 135, 703–706 (1999).

    Article  CAS  PubMed  Google Scholar 

  6. Marino, B. et al. Noonan syndrome: structural abnormalities of the mitral valve causing subaortic obstruction. Eur. J. Pediatr. 154, 949–952 (1995).

    Article  CAS  PubMed  Google Scholar 

  7. Digilio, M.C. et al. Noonan syndrome and aortic coarctation. Am. J. Med. Genet. 80, 160–162 (1998).

    Article  CAS  PubMed  Google Scholar 

  8. Bertola, D.R. et al. Cardiac findings in 31 patients with Noonan's syndrome. Arq. Bras. Cardiol. 75, 409–412 (2000).

    Article  CAS  PubMed  Google Scholar 

  9. Bader-Meunier, B. et al. Occurrence of myeloproliferative disorder in patients with Noonan syndrome. J. Pediatr. 130, 885–889 (1997).

    Article  CAS  PubMed  Google Scholar 

  10. Johannes, J.M., Garcia, E.R., De Vaan, G.A. & Weening, R.S. Noonan's syndrome in association with acute leukemia. Pediatr. Hematol. Oncol. 12, 571–575 (1995).

    Article  CAS  PubMed  Google Scholar 

  11. Side, L.E. & Shannon, K.M. Myeloid disorders in infants with Noonan syndrome and a resident's “rule” recalled. J. Pediatr. 130, 857–859 (1997).

    CAS  PubMed  Google Scholar 

  12. Tartaglia, M. et al. Mutations in PTPN11, encoding the protein tyrosine phosphatase SHP-2, cause Noonan syndrome. Nat. Genet. 29, 465–468 (2001).

    Article  CAS  PubMed  Google Scholar 

  13. Kosaki, K. et al. PTPN11 (protein-tyrosine phosphatase, nonreceptor-type 11) mutations in seven Japanese patients with Noonan syndrome. J. Clin. Endocrinol. Metab. 87, 3529–3533 (2002).

    Article  CAS  PubMed  Google Scholar 

  14. Maheshwari, M. et al. PTPN11 mutations in Noonan syndrome type I: detection of recurrent mutations in exons 3 and 13. Hum. Mutat. 20, 298–304 (2002).

    Article  CAS  PubMed  Google Scholar 

  15. Tartaglia, M. et al. PTPN11 mutations in Noonan syndrome: molecular spectrum, genotype-phenotype correlation, and phenotypic heterogeneity. Am. J. Hum. Genet. 70, 1555–1563 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Neel, B.G., Gu, H. & Pao, L. The 'Shp'ing news: SH2 domain-containing tyrosine phosphatases in cell signaling. Trends Biochem. Sci. 28, 284–293 (2003).

    Article  CAS  PubMed  Google Scholar 

  17. Araki, T., Nawa, H. & Neel, B.G. Tyrosyl phosphorylation of Shp2 is required for normal ERK activation in response to some, but not all, growth factors. J. Biol. Chem. 278, 41677–41684 (2003).

    Article  CAS  PubMed  Google Scholar 

  18. Barford, D. & Neel, B.G. Revealing mechanisms for SH2 domain mediated regulation of the protein tyrosine phosphatase SHP-2. Structure 6, 249–254 (1998).

    Article  CAS  PubMed  Google Scholar 

  19. Hof, P., Pluskey, S., Dhe-Paganon, S., Eck, M.J. & Shoelson, S.E. Crystal structure of the tyrosine phosphatase SHP-2. Cell 92, 441–450 (1998).

    Article  CAS  PubMed  Google Scholar 

  20. O'Reilly, A.M., Pluskey, S., Shoelson, S.E. & Neel, B.G. Activated mutants of SHP-2 preferentially induce elongation of Xenopus animal caps. Mol. Cell. Biol. 20, 299–311 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Tartaglia, M. et al. Somatic mutations in PTPN11 in juvenile myelomonocytic leukemia, myelodysplastic syndromes and acute myeloid leukemia. Nat. Genet. 34, 148–150 (2003).

    Article  CAS  PubMed  Google Scholar 

  22. Loh, M.L. et al. Somatic mutations in PTPN11 implicate the protein tyrosine phosphatase SHP-2 in leukemogenesis. Blood 103, 2325–2331 (2003).

    Article  PubMed  Google Scholar 

  23. Tartaglia, M. et al. Genetic evidence for lineage- and differentiation stage-related contribution of somatic PTPN11 mutations to leukemogenesis in childhood acute leukemia. Blood 104, 307–313 (2004).

    Article  CAS  PubMed  Google Scholar 

  24. Musante, L. et al. Spectrum of mutations in PTPN11 and genotype-phenotype correlation in 96 patients with Noonan syndrome and five patients with cardio-facio-cutaneous syndrome. Eur. J. Hum. Genet. 11, 201–206 (2003).

    Article  CAS  PubMed  Google Scholar 

  25. Gitler, A.D. et al. Nf1 has an essential role in endothelial cells. Nat. Genet. 33, 75–79 (2003).

    Article  CAS  PubMed  Google Scholar 

  26. Ahmed, M.L. et al. Noonan's syndrome: abnormalities of the growth hormone/IGF-I axis and the response to treatment with human biosynthetic growth hormone. Acta Paediatr. Scand. 80, 446–450 (1991).

    Article  CAS  PubMed  Google Scholar 

  27. Jacks, T. et al. Tumour predisposition in mice heterozygous for a targeted mutation in Nf1. Nat. Genet. 7, 353–361 (1994).

    Article  CAS  PubMed  Google Scholar 

  28. Brannan, C.I. et al. Targeted disruption of the neurofibromatosis type-1 gene leads to developmental abnormalities in heart and various neural crest-derived tissues. Genes Dev. 8, 1019–1029 (1994).

    Article  CAS  PubMed  Google Scholar 

  29. Lakkis, M.M. & Epstein, J.A. Neurofibromin modulation of ras activity is required for normal endocardial-mesenchymal transformation in the developing heart. Development 125, 4359–4367 (1998).

    CAS  PubMed  Google Scholar 

  30. Bahuau, M. et al. Exclusion of allelism of Noonan syndrome and neurofibromatosis-type 1 in a large family with Noonan syndrome-neurofibromatosis association. Am. J. Med. Genet. 66, 347–355 (1996).

    Article  CAS  PubMed  Google Scholar 

  31. Epstein, J.A. Developing models of DiGeorge syndrome. Trends Genet. 17, S13–S17 (2001).

    Article  CAS  PubMed  Google Scholar 

  32. Sarkozy, A. et al. Correlation between PTPN11 gene mutations and congenital heart defects in Noonan and LEOPARD syndromes. J. Med. Genet. 40, 704–708 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Braun, B.S. et al. Somatic activation of oncogenic Kras in hematopoietic cells initiates a rapidly fatal myeloproliferative disorder. Proc. Natl Acad. Sci. USA 101, 597–602 (2004).

    Article  CAS  PubMed  Google Scholar 

  34. Chan, I.T. et al. Conditional expression of oncogenic K-ras from its endogenous promoter induces a myeloproliferative disease. J. Clin. Invest. 113, 528–538 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Dieterlen-Lievre, F. Hematopoiesis: progenitors and their genetic program. Curr. Biol. 8, R727–R730 (1998).

    Article  CAS  PubMed  Google Scholar 

  36. Gitler, A.D. et al. Tie2-Cre-induced inactivation of a conditional mutant Nf1 allele in mouse results in a myeloproliferative disorder that models juvenile myelomonocytic leukemia. Pediatr. Res. 55, 581–584 (2004).

    Article  CAS  PubMed  Google Scholar 

  37. Couly, G.F., Coltey, P.M. & Le Douarin, N.M. The triple origin of skull in higher vertebrates: a study in quail-chick chimeras. Development 117, 409–429 (1993).

    CAS  PubMed  Google Scholar 

  38. Kontges, G. & Lumsden, A. Rhombencephalic neural crest segmentation is preserved throughout craniofacial ontogeny. Development 122, 3229–3242 (1996).

    CAS  PubMed  Google Scholar 

  39. Birchmeier, C., Birchmeier, W., Gherardi, E. & Vande Woude, G.F. Met, metastasis, motility and more. Nat. Rev. Mol. Cell Biol. 4, 915–925 (2003).

    Article  CAS  PubMed  Google Scholar 

  40. Ghosh, S. & Karin, M. Missing pieces in the NF-κB puzzle. Cell 109, S81–S96 (2002).

    Article  CAS  PubMed  Google Scholar 

  41. Kapoor, G.S., Zhan, Y., Johnson, G.R. & O'Rourke, D.M. Distinct domains in the SHP-2 phosphatase differentially regulate epidermal growth factor receptor/NF-κB activation through Gab1 in glioblastoma cells. Mol. Cell. Biol. 24, 823–836 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. You, M., Flick, L.M., Yu, D. & Feng, G.S. Modulation of the nuclear factor kappa B pathway by Shp-2 tyrosine phosphatase in mediating the induction of interleukin (IL)-6 by IL-1 or tumor necrosis factor. J. Exp. Med. 193, 101–110 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Fragale, A., Tartaglia, M., Wu, J. & Gelb, B.D. Noonan syndrome–associated SHP2/PTPN11 mutants cause EGF-dependent prolonged GAB1 binding and sustained ERK2/MAPK1 activation. Hum. Mutat. 23, 267–277 (2004).

    Article  CAS  PubMed  Google Scholar 

  44. Tuveson, D.A. et al. Endogenous oncogenic K-rasG12D stimulates proliferation and widespread neoplastic and developmental defects. Cancer Cell 5, 375–387 (2004).

    Article  CAS  PubMed  Google Scholar 

  45. Itoh, M. et al. Role of Gab1 in heart, placenta, and skin development and growth factor- and cytokine-induced extracellular signal-regulated kinase mitogen-activated protein kinase activation. Mol. Cell. Biol. 20, 3695–3704 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Su, I.H. et al. Ezh2 controls B cell development through histone H3 methylation and Igh rearrangement. Nat. Immunol. 4, 124–131 (2003).

    Article  CAS  PubMed  Google Scholar 

  47. Zhang, S.Q. et al. Shp2 regulates SRC family kinase activity and Ras/Erk activation by controlling Csk recruitment. Mol. Cell 13, 341–355 (2004).

    Article  PubMed  Google Scholar 

  48. Klaman, L.D. et al. Increased energy expenditure, decreased adiposity, and tissue-specific insulin sensitivity in protein-tyrosine phosphatase 1B-deficient mice. Mol. Cell. Biol. 20, 5479–5489 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Corson, L.B., Yamanaka, Y., Lai, K.M. & Rossant, J. Spatial and temporal patterns of ERK signaling during mouse embryogenesis. Development 130, 4527–4537 (2003).

    Article  CAS  PubMed  Google Scholar 

  50. Sattler, M. et al. Critical role for Gab2 in transformation by BCR/ABL. Cancer Cell 1, 479–492 (2002).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank C.J. Rosen and J. Burgess for measuring IGF-I levels in serum and W. Pu for helpful discussions. This work was supported by US National Institutes of Health (NIH) R01 CA49152 and DK66600 and a Translational Research Grant from the Leukemia and Lymphoma Society (to B.G.N.), NIH R01 HL62974 and HL61475 (to J.A.E.), N.I.H. P01 DK50654 (to B.G.N., D.G.G. and J.L.K.) and NIH R01 DK64730 (to I.R.W.). Flow cytometric studies were partially supported by Digestive Disease Research and Development Center grant NIH DK 64399. D.G.G. is an Investigator of the Howard Hughes Medical Institute. T. A. and M.G.M. were supported by fellowships from The Leukemia and Lymphoma Society. L.P. was supported by NIH training grant T32CA81156 and F.A.I. by NIH training grant T32HL007915.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Toshiyuki Araki.

Ethics declarations

Competing interests

B.G.N. is a member of the Scientific Advisory Board and a Consultant for Ceptyr, Inc. However, the work described in this manuscript was not supported by Ceptyr or any other pharmaceutical company. The other authors have no potentially competing financial interests to declare.

Supplementary information

Supplementary Fig. 1

Comparison of mitral (MV) and tricuspid (TV) valves between E18.5 WT and Shp2D61G/+ embryos. (PDF 85 kb)

Supplementary Table 1

Progeny from Shp2D61G/+ matings. (PDF 114 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Araki, T., Mohi, M., Ismat, F. et al. Mouse model of Noonan syndrome reveals cell type– and gene dosage–dependent effects of Ptpn11 mutation. Nat Med 10, 849–857 (2004). https://doi.org/10.1038/nm1084

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm1084

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing