Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

mTOR inhibition reverses Akt-dependent prostate intraepithelial neoplasia through regulation of apoptotic and HIF-1-dependent pathways

Abstract

Loss of PTEN function leads to activation of phosphoinositide 3-kinase (PI3K) signaling and Akt. Clinical trials are now testing whether mammalian target of rapamycin (mTOR) inhibition is useful in treating PTEN-null cancers. Here, we report that mTOR inhibition induced apoptosis of epithelial cells and the complete reversal of a neoplastic phenotype in the prostate of mice expressing human AKT1 in the ventral prostate. Induction of cell death required the mitochondrial pathway, as prostate-specific coexpression of BCL2 blocked apoptosis. Thus, there is an mTOR-dependent survival signal required downstream of Akt. Bcl2 expression, however, only partially restored intraluminal cell growth in the setting of mTOR inhibition. Expression profiling showed that Hif-1α targets, including genes encoding most glycolytic enzymes, constituted the dominant transcriptional response to AKT activation and mTOR inhibition. These data suggest that the expansion of AKT-driven prostate epithelial cells requires mTOR-dependent survival signaling and activation of HIF-1α, and that clinical resistance to mTOR inhibitors may emerge through BCL2 expression and/or upregulation of HIF-1α activity.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: An mTOR inhibitor (RAD001) reverses the PIN phenotype of AKT1-Tg mice.
Figure 2: Selective in vivo inactivation of mTOR and S6K activity by RAD001.
Figure 3: Time course of the phenotypic response to mTOR inhibition.
Figure 4: Induction of cell death by mTOR inhibition in AKT1-Tg mice.
Figure 5: Complete phenotype regression after mTOR inhibition requires the mitochondrial apoptosis pathway.
Figure 6: Expression profiles of mTOR inhibition are enriched for Hif-1α targets and glycolysis genes.

Similar content being viewed by others

Accession codes

Accessions

Gene Expression Omnibus

References

  1. Maehama, T. & Dixon, J.E. The tumor suppressor, PTEN/MMAC1, dephosphorylates the lipid second messenger, phosphatidylinositol 3,4,5-trisphosphate. J. Biol. Chem. 273, 13375–13378 (1998).

    Article  CAS  Google Scholar 

  2. del Peso, L., Gonzalez-Garcia, M., Page, C., Herrera, R. & Nunez, G. Interleukin-3-induced phosphorylation of BAD through the protein kinase Akt. Science 278, 687–689 (1997).

    Article  CAS  Google Scholar 

  3. Kops, G.J. et al. Direct control of the Forkhead transcription factor AFX by protein kinase B. Nature 398, 630–634 (1999).

    Article  CAS  Google Scholar 

  4. Nakamura, N. et al. Forkhead transcription factors are critical effectors of cell death and cell cycle arrest downstream of PTEN. Mol. Cell. Biol. 20, 8969–8982 (2000).

    Article  CAS  Google Scholar 

  5. Cross, D.A., Alessi, D.R., Cohen, P., Andjelkovich, M. & Hemmings, B.A. Inhibition of glycogen synthase kinase-3 by insulin mediated by protein kinase B. Nature 378, 785–789 (1995).

    Article  CAS  Google Scholar 

  6. Goberdhan, D.C., Paricio, N., Goodman, E.C., Mlodzik, M. & Wilson, C. Drosophila tumor suppressor PTEN controls cell size and number by antagonizing the Chico/PI3-kinase signaling pathway. Genes Dev. 13, 3244–3258 (1999).

    Article  CAS  Google Scholar 

  7. Oldham, S., Montagne, J., Radimerski, T., Thomas, G. & Hafen, E. Genetic and biochemical characterization of dTOR, the Drosophila homolog of the target of rapamycin. Genes Dev. 14, 2689–2694 (2000).

    Article  CAS  Google Scholar 

  8. Neshat, M.S. et al. Enhanced sensitivity of PTEN-deficient tumors to inhibition of FRAP/mTOR. Proc. Natl. Acad. Sci. USA 98, 10314–10319 (2001).

    Article  CAS  Google Scholar 

  9. Podsypanina, K. et al. An inhibitor of mTOR reduces neoplasia and normalizes p70/S6 kinase activity in Pten+/− mice. Proc. Natl. Acad. Sci. USA 98, 10320–10325 (2001).

    Article  CAS  Google Scholar 

  10. Aoki, M., Blazek, E. & Vogt, P.K. A role of the kinase mTOR in cellular transformation induced by the oncoproteins P3k and Akt. Proc. Natl. Acad. Sci. USA 98, 136–141 (2001).

    Article  CAS  Google Scholar 

  11. Manning, B.D., Tee, A.R., Logsdon, M.N., Blenis, J. & Cantley, L.C. Identification of the tuberous sclerosis complex-2 tumor suppressor gene product tuberin as a target of the phosphoinositide 3-kinase/akt pathway. Mol. Cell 10, 151–162 (2002).

    Article  CAS  Google Scholar 

  12. Gao, X. et al. Tsc tumour suppressor proteins antagonize amino-acid-TOR signalling. Nat. Cell Biol. 4, 699–704 (2002).

    Article  CAS  Google Scholar 

  13. Gao, X. & Pan, D. TSC1 and TSC2 tumor suppressors antagonize insulin signaling in cell growth. Genes Dev. 15, 1383–192 (2001).

    Article  CAS  Google Scholar 

  14. Potter, C.J., Huang, H. & Xu, T. Drosophila Tsc1 functions with Tsc2 to antagonize insulin signaling in regulating cell growth, cell proliferation, and organ size. Cell 105, 357–368 (2001).

    Article  CAS  Google Scholar 

  15. Tee, A.R., Manning, B.D., Roux, P.P., Cantley, L.C. & Blenis, J. Tuberous sclerosis complex gene products, Tuberin and Hamartin, control mTOR signaling by acting as a GTPase-activating protein complex toward Rheb. Curr. Biol. 13, 1259–1268 (2003).

    Article  CAS  Google Scholar 

  16. Huang, S. & Houghton, P.J. Inhibitors of mammalian target of rapamycin as novel antitumor agents: from bench to clinic. Curr. Opin. Invest. Drugs 3, 295–304 (2002).

    CAS  Google Scholar 

  17. Majumder, P.K. et al. Prostate intraepithelial neoplasia induced by prostate restricted Akt activation: the MPAKT model. Proc. Natl. Acad. Sci. USA 100, 7841–7846 (2003).

    Article  CAS  Google Scholar 

  18. Nashan, B. Early clinical experience with a novel rapamycin derivative. Ther. Drug Monit. 24, 53–58 (2002).

    Article  CAS  Google Scholar 

  19. Raught, B. et al. Serum-stimulated, rapamycin-sensitive phosphorylation sites in the eukaryotic translation initiation factor 4GI. EMBO J. 19, 434–444 (2000).

    Article  CAS  Google Scholar 

  20. Bruckheimer, E.M. et al. The impact of bcl-2 expression and bax deficiency on prostate homeostasis in vivo. Oncogene 19, 2404–2412 (2000).

    Article  CAS  Google Scholar 

  21. Mootha, V.K. et al. PGC-1α-responsive genes involved in oxidative phosphorylation are coordinately downregulated in human diabetes. Nat. Genet. 34, 267–273 (2003).

    Article  CAS  Google Scholar 

  22. Semenza, G. Signal transduction to hypoxia-inducible factor 1. Biochem. Pharmacol. 64, 993–998 (2002).

    Article  CAS  Google Scholar 

  23. Sellers, W.R. & Sawyers, C.A. Somatic genetics of prostate cancer: oncogenes and Tumor Suppressors. in Prostate Cancer Principles and Practice (ed. Kantoff, P.) (Lippincott Williams & Wilkins, Philadelphia, USA, 2002).

    Google Scholar 

  24. Samuels, Y. et al. High frequency of mutations of the PIK3CA gene in human cancers. Science 304, 554 (2004).

    Article  CAS  Google Scholar 

  25. Shayesteh, L. et al. PIK3CA is implicated as an oncogene in ovarian cancer. Nat. Genet. 21, 99–102 (1999).

    Article  CAS  Google Scholar 

  26. Debnath, J. et al. The role of apoptosis in creating and maintaining luminal space within normal and oncogene-expressing mammary acini. Cell 111, 29–40 (2002).

    Article  CAS  Google Scholar 

  27. Debnath, J., Walker, S.J. & Brugge, J.S. Akt activation disrupts mammary acinar architecture and enhances proliferation in an mTOR-dependent manner. J. Cell. Biol. 163, 315–326 (2003).

    Article  CAS  Google Scholar 

  28. Wendel, H.G. et al. Survival signalling by Akt and eIF4E in oncogenesis and cancer therapy. Nature 428, 332–337 (2004).

    Article  CAS  Google Scholar 

  29. Edinger, A.L. & Thompson, C.B. Akt maintains cell size and survival by increasing mTOR-dependent nutrient uptake. Mol. Biol. Cell 13, 2276–2288 (2002).

    Article  CAS  Google Scholar 

  30. McDonnell, T.J. et al. Expression of the protooncogene bcl-2 in the prostate and its association with emergence of androgen-independent prostate cancer. Cancer Res. 52, 6940–6944 (1992).

    CAS  PubMed  Google Scholar 

  31. Furuya, Y., Krajewski, S., Epstein, J.I., Reed, J.C. & Isaacs, J.T. Expression of bcl-2 and the progression of human and rodent prostatic cancers. Clin. Cancer Res. 2, 389–398 (1996).

    CAS  PubMed  Google Scholar 

  32. Krajewska, M. et al. Immunohistochemical analysis of bcl-2, bax, bcl-X, and mcl-1 expression in prostate cancers. Am. J. Pathol. 148, 1567–1576 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Colombel, M. et al. Detection of the apoptosis-suppressing oncoprotein bc1-2 in hormone-refractory human prostate cancers. Am. J. Pathol. 143, 390–400 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Baltaci, S., Orhan, D., Ozer, G., Tolunay, O. & Gogous, O. Bcl-2 proto-oncogene expression in low- and high-grade prostatic intraepithelial neoplasia. BJU Int. 85, 155–159 (2000).

    Article  CAS  Google Scholar 

  35. McMenamin, M.E. et al. Loss of PTEN expression in paraffin-embedded primary prostate cancer correlates with high Gleason score and advanced stage. Cancer Res. 59, 4291–4296 (1999).

    CAS  PubMed  Google Scholar 

  36. Suzuki, H. et al. Interfocal heterogeneity of PTEN/MMAC1 gene alterations in multiple metastatic prostate cancer tissues. Cancer Res. 58, 204–209 (1998).

    CAS  Google Scholar 

  37. Huang, H. et al. PTEN induces chemosensitivity in PTEN-mutated prostate cancer cells by suppression of Bcl-2 expression. J. Biol. Chem. 276, 38830–38836 (2001).

    Article  CAS  Google Scholar 

  38. Mita, M.M., Mita, A. & Rowinsky, E.K. Mammalian target of rapamycin: a new molecular target for breast cancer. Clin. Breast Cancer 4, 126–137 (2003).

    Article  CAS  Google Scholar 

  39. Hidalgo, M. & Rowinsky, E.K. The rapamycin-sensitive signal transduction pathway as a target for cancer therapy. Oncogene 19, 6680–6686 (2000).

    Article  CAS  Google Scholar 

  40. Chi, K.N. et al. A phase I dose-finding study of combined treatment with an antisense Bcl-2 oligonucleotide (Genasense) and mitoxantrone in patients with metastatic hormone-refractory prostate cancer. Clin. Cancer Res. 7, 3920–3927 (2001).

    CAS  PubMed  Google Scholar 

  41. Morris, M.J. et al. Phase I trial of BCL-2 antisense oligonucleotide (G3139) administered by continuous intravenous infusion in patients with advanced cancer. Clin. Cancer Res. 8, 679–683 (2002).

    CAS  PubMed  Google Scholar 

  42. DiPaola, R.S. et al. Phase I clinical and pharmacologic study of 13-cis-retinoic acid, interferon alfa, and paclitaxel in patients with prostate cancer and other advanced malignancies. J. Clin. Oncol. 17, 2213–2218 (1999).

    Article  CAS  Google Scholar 

  43. Friedland, D. et al. A phase II trial of docetaxel (Taxotere) in hormone-refractory prostate cancer: correlation of antitumor effect to phosphorylation of Bcl-2. Semin. Oncol. 26, 19–23 (1999).

    CAS  PubMed  Google Scholar 

  44. Semenza, G.L. Targeting HIF-1 for cancer therapy. Nat. Rev. Cancer 3, 721–732 (2003).

    Article  CAS  Google Scholar 

  45. Abraham, R.T. mTOR as a positive regulator of tumor cell responses to hypoxia. Curr. Top. Microbiol. Immunol. 279, 299–319 (2004).

    CAS  PubMed  Google Scholar 

  46. Hudson, C.C. et al. Regulation of hypoxia-inducible factor 1α expression and function by the mammalian target of rapamycin. Mol. Cell. Biol. 22, 7004–7014 (2002).

    Article  CAS  Google Scholar 

  47. Zhong, H. et al. Modulation of hypoxia-inducible factor 1α expression by the epidermal growth factor/phosphatidylinositol 3-kinase/PTEN/AKT/FRAP pathway in human prostate cancer cells: implications for tumor angiogenesis and therapeutics. Cancer Res. 60, 1541–1545 (2000).

    CAS  PubMed  Google Scholar 

  48. Treins, C., Giorgetti-Peraldi, S., Murdaca, J., Semenza, G.L. & Van Obberghen, E. Insulin stimulates hypoxia-inducible factor 1 through a phosphatidylinositol 3-kinase/target of rapamycin-dependent signaling pathway. J. Biol. Chem. 277, 27975–27981 (2002).

    Article  CAS  Google Scholar 

  49. Brugarolas, J.B., Vazquez, F., Reddy, A., Sellers, W.R. & Kaelin, W.G., Jr. TSC2 regulates VEGF through mTOR-dependent and -independent pathways. Cancer Cell 4, 147–158 (2003).

    Article  CAS  Google Scholar 

  50. Taesch, S. & Niese, D. Safety and tolerability of a new oral formulation of cyclosporin A, Sandimmun Neoral, in renal transplant patients. Transpl. Int. 7 (suppl. 1), S263–S266 (1994).

    Article  Google Scholar 

Download references

Acknowledgements

We thank M.A. Brown and W.G. Kaelin for critical comments; J. Shim, N. Bhattacharya, A. Thorner and S. Luo for technical assistance; and J. Pouyssegur for the Hif-1 antibody. This work was supported the Linda and Arthur Gelb Center for Translational Research, by the National Cancer Institute (PO1CA89021), by CaPCURE, by the Damon-Runyon Cancer Research Foundation (W.R.S.) and by a Career Development Award from the DF/HCC SPORE in Prostate Cancer (P.K.M.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William R Sellers.

Ethics declarations

Competing interests

W.R.S. and M.L. receive research support from and are consultants for the Novartis Institute of Biomedical Research. H.A.L. is an employee of the Novartis Institute of Biomedical Research. L.M.M. is an employee of Novartis Pharmaceutical Corporation.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Majumder, P., Febbo, P., Bikoff, R. et al. mTOR inhibition reverses Akt-dependent prostate intraepithelial neoplasia through regulation of apoptotic and HIF-1-dependent pathways. Nat Med 10, 594–601 (2004). https://doi.org/10.1038/nm1052

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm1052

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing