Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Suramin inhibits death receptor–induced apoptosis in vitro and fulminant apoptotic liver damage in mice

Abstract

Suramin is a polysulfonated derivative of urea and has been widely used both to treat infections and as a chemotherapeutic drug. Suramin has been shown to inhibit growth factor signaling pathways; however, its effect on apoptosis is unknown. Here we show that suramin inhibits apoptosis induced through death receptors in hepatoma and lymphoma cells. It also inhibits the proapoptotic effect of chemotherapeutic drugs. The antiapoptotic mechanism is specific to cell type and is caused by reduced activation, but not altered composition, of the death-inducing signaling complex (DISC), and by inhibition of the initiator caspases 8, 9 and 10. Suramin also shows similar effects in in vivo models: apoptotic liver damage induced by CD95 stimulation and endotoxic shock mediated by tumor-necrosis factor (TNF) are inhibited in mice, but necrotic liver damage is not inhibited in a rat model of liver transplantation. Thus, the antiapoptotic property of suramin in the liver may be therapeutically exploited.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Inhibition of apoptosis by suramin in HepG2 and Jurkat cells.
Figure 2: Suramin effects are specific to cell type.
Figure 3: Time course of apoptosis inhibition and caspase inhibition.
Figure 4: Inhibition of CD95 DISC and caspase 8 activity.
Figure 5: Suramin protects mice from CD95-induced fulminant liver failure.
Figure 6: Inhibition of TNF-mediated liver failure.

Similar content being viewed by others

References

  1. Krammer, P.H., Galle, P.R., Moller, P. & Debatin, K.M. CD95(APO-1/Fas)-mediated apoptosis in normal and malignant liver, colon, and hematopoietic cells. Adv. Cancer Res. 75, 251–273 (1998).

    Article  CAS  Google Scholar 

  2. Krammer, P.H. CD95(APO-1/Fas)-mediated apoptosis: live and let die. Adv. Immunol. 71, 163–210 (1999).

    Article  CAS  Google Scholar 

  3. Galle, P.R. et al. Involvement of the CD95 (APO-1/Fas) receptor and ligand in liver damage. J. Exp. Med. 182, 1223–1230 (1995).

    Article  CAS  Google Scholar 

  4. Voogd, T.E., Vansterkenburg, E.L., Wilting, J. & Janssen, L.H. Recent research on the biological activity of suramin. Pharmacol. Rev. 45, 177–203 (1993).

    CAS  PubMed  Google Scholar 

  5. Mitsuya, H. et al. Suramin protection of T cells in vitro against infectivity and cytopathic effect of HTLV-III. Science 226, 172–174 (1984).

    Article  CAS  Google Scholar 

  6. Yarchoan, R. & Broder, S. Development of antiretroviral therapy for the acquired immunodeficiency syndrome and related disorders. A progress report. N. Engl. J. Med. 316, 557–564 (1987).

    Article  CAS  Google Scholar 

  7. Cheson, B.D. et al. Suramin therapy in AIDS and related disorders. Report of the US Suramin Working Group. J. Am. Med. Assoc. 258, 1347–1351 (1987).

    Article  CAS  Google Scholar 

  8. Allolio, B. et al. Treatment of metastatic adrenal carcinoma with suramin. Dtsch. Med. Wochenschr. 114, 381–384 (1989).

    Article  CAS  Google Scholar 

  9. La Rocca, R.V., Stein, C.A. & Myers, C.E. Suramin: prototype of a new generation of antitumor compounds. Cancer Cells 2, 106–115 (1990).

    CAS  PubMed  Google Scholar 

  10. Eisenberger, M.A. & Reyno, L.M. Suramin. Cancer Treat. Rev. 20, 259–273 (1994).

    Article  CAS  Google Scholar 

  11. Krueger, A., Schmitz, I., Baumann, S., Krammer, P.H. & Kirchhoff, S. Cellular FLICE-inhibitory protein splice variants inhibit different steps of caspase-8 activation at the CD95 death-inducing signaling complex. J. Biol. Chem. 276, 20633–20640 (2001).

    Article  CAS  Google Scholar 

  12. Muller, M. et al. p53 activates the CD95 (APO-1/Fas) gene in response to DNA damage by anticancer drugs. J. Exp. Med. 188, 2033–2045 (1998).

    Article  CAS  Google Scholar 

  13. Eichhorst, S.T., Muerkoster, S., Weigand, M.A. & Krammer, P.H. The chemotherapeutic drug 5-fluorouracil induces apoptosis in mouse thymocytes in vivo via activation of the CD95(APO-1/Fas) system. Cancer Res. 61, 243–248 (2001).

    CAS  PubMed  Google Scholar 

  14. Collette, Y., Razanajaona, D., Ghiotto, M. & Olive, D. CD28 can promote T cell survival through a phosphatidylinositol 3-kinase-independent mechanism. Eur. J. Immunol. 27, 3283–3289 (1997).

    Article  CAS  Google Scholar 

  15. Scaffidi, C. et al. Two CD95 (APO-1/Fas) signaling pathways. EMBO J. 17, 1675–1687 (1998).

    Article  CAS  Google Scholar 

  16. Rokhlin, O.W. et al. Fas-mediated apoptosis in human prostatic carcinoma cell lines. Cancer Res. 57, 1758–1768 (1997).

    CAS  PubMed  Google Scholar 

  17. Troy, C.M. & Shelanski, M.L. Caspase-2 redux. Cell Death Differ. 10, 101–107 (2003).

    Article  CAS  Google Scholar 

  18. Sprick, M.R. et al. Caspase-10 is recruited to and activated at the native TRAIL and CD95 death-inducing signalling complexes in a FADD-dependent manner but can not functionally substitute caspase-8. EMBO J. 21, 4520–4530 (2002).

    Article  CAS  Google Scholar 

  19. Ogasawara, J. et al. Lethal effect of the anti-Fas antibody in mice. Nature 364, 806–809 (1993).

    Article  CAS  Google Scholar 

  20. Jaeschke, H. et al. Activation of caspase 3 (CPP32)-like proteases is essential for TNF-α–induced hepatic parenchymal cell apoptosis and neutrophil-mediated necrosis in a murine endotoxin shock model. J. Immunol. 160, 3480–3486 (1998).

    CAS  PubMed  Google Scholar 

  21. Peterlin, B.M. & Trono, D. Hide, shield and strike back: how HIV-infected cells avoid immune eradication. Nat. Rev. Immunol. 3, 97–107 (2003).

    Article  CAS  Google Scholar 

  22. Kuyu, H., Lee, W.R., Bare, R., Hall, M.C. & Torti, F.M. Recent advances in the treatment of prostate cancer. Ann. Oncol. 10, 891–898 (1999).

    Article  CAS  Google Scholar 

  23. Small, E.J. et al. Randomized study of three different doses of suramin administered with a fixed dosing schedule in patients with advanced prostate cancer: results of intergroup 0159, cancer and leukemia group B 9480. J. Clin. Oncol. 20, 3369–3375 (2002).

    Article  CAS  Google Scholar 

  24. Song, S., Wientjes, M.G., Gan, Y. & Au, J.L. Fibroblast growth factors: an epigenetic mechanism of broad spectrum resistance to anticancer drugs. Proc. Natl. Acad. Sci. USA 97, 8658–8663 (2000).

    Article  CAS  Google Scholar 

  25. Zhao, X.M. et al. Costimulation of human CD4+ T cells by fibroblast growth factor-1 (acidic fibroblast growth factor). J. Immunol. 155, 3904–3911 (1995).

    CAS  PubMed  Google Scholar 

  26. Higuchi, H. et al. Bile acids stimulate cFLIP phosphorylation enhancing TRAIL-mediated apoptosis. J. Biol. Chem. 278, 454–461 (2003).

    Article  CAS  Google Scholar 

  27. Reinehr, R., Graf, D., Fischer, R., Schliess, F. & Haussinger, D. Hyperosmolarity triggers CD95 membrane trafficking and sensitizes rat hepatocytes toward CD95L-induced apoptosis. Hepatology 36, 602–614 (2002).

    Article  CAS  Google Scholar 

  28. Huwiler, A., Rolz, W., Dorsch, S., Ren, S. & Pfeilschifter, J. Extracellular ATP and UTP activate the protein kinase B/Akt cascade via the P2Y2 purinoceptor in renal mesangial cells. Br. J. Pharmacol. 136, 520–529 (2002).

    Article  CAS  Google Scholar 

  29. Lambrecht, G. et al. Structure-activity relationships of suramin and pyridoxal-5′-phosphate derivatives as P2 receptor antagonists. Curr. Pharm. Des. 8, 2371–2399 (2002).

    Article  CAS  Google Scholar 

  30. Kharlamov, A., Jones, S.C. & Kim, D.K. Suramin reduces infarct volume in a model of focal brain ischemia in rats. Exp. Brain Res. 147, 353–359 (2002).

    Article  CAS  Google Scholar 

  31. Chen, E.Y., Mazure, N.M., Cooper, J.A. & Giaccia, A.J. Hypoxia activates a platelet-derived growth factor receptor/phosphatidylinositol 3-kinase/Akt pathway that results in glycogen synthase kinase-3 inactivation. Cancer Res. 61, 2429–2433 (2001).

    CAS  PubMed  Google Scholar 

  32. McNally, W.P., DeHart, P.D., Lathia, C. & Whitfield, L.R. Distribution of [14C]suramin in tissues of male rats following a single intravenous dose. Life Sci. 67, 1847–1857 (2000).

    Article  CAS  Google Scholar 

  33. Scaffidi, C., Medema, J.P., Krammer, P.H. & Peter, M.E. FLICE is predominantly expressed as two functionally active isoforms, caspase-8/a and caspase-8/b. J. Biol. Chem. 272, 26953–26958 (1997).

    Article  CAS  Google Scholar 

  34. Scaffidi, C., Krammer, P.H. & Peter, M.E. Isolation and analysis of components of CD95 (APO-1/Fas) death-inducing signaling complex. Methods 17, 287–291 (1999).

    Article  CAS  Google Scholar 

  35. Trauth, B.C. et al. Monoclonal antibody-mediated tumor regression by induction of apoptosis. Science 245, 301–305 (1989).

    Article  CAS  Google Scholar 

  36. Walczak, H. et al. Tumoricidal activity of tumor necrosis factor-related apoptosis-inducing ligand in vivo. Nat. Med. 5, 157–163 (1999).

    Article  CAS  Google Scholar 

  37. Nicoletti, I., Migliorati, G., Pagliacci, M.C., Grignani, F. & Riccardi, C. A rapid and simple method for measuring thymocyte apoptosis by propidium iodide staining and flow cytometry. J. Immunol. Methods 139, 271–279 (1991).

    Article  CAS  Google Scholar 

  38. Kischkel, F.C. et al. Cytotoxicity-dependent APO-1 (Fas/CD95)-associated proteins form a death-inducing signaling complex (DISC) with the receptor. EMBO J. 14, 5579–5588 (1995).

    Article  CAS  Google Scholar 

  39. Medema, J.P. et al. Cleavage of FLICE (caspase-8) by granzyme B during cytotoxic T lymphocyte-induced apoptosis. Eur. J. Immunol. 27, 3492–3498 (1997).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank C. Kuntzen for critically reading the manuscript and M. Börner for help with transaminase measurements. This work was partially supported by grants of the Deutsche Forschungsgemeinschaft (EI480-1 to S.T.E. and FOR 440).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter H Krammer.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Eichhorst, S., Krueger, A., Müerköster, S. et al. Suramin inhibits death receptor–induced apoptosis in vitro and fulminant apoptotic liver damage in mice. Nat Med 10, 602–609 (2004). https://doi.org/10.1038/nm1049

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm1049

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing