Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Commentary
  • Published:

Vascular endothelial growth factor and age-related macular degeneration: from basic science to therapy

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Structure of the VEGF-ranibizumab complex, showing two Fab molecules binding the symmetrical poles of the VEGR dimer40.
Figure 2: Mean change from baseline visual acuity score (letters) over time in the ANCHOR trial.
Figure 3: Role of VEGF in the progression of CNV in wet AMD.

References

  1. Ferrara, N. VEGF and the quest for tumour angiogenesis factors. Nat. Rev. Cancer 2, 795–803 (2002).

    Article  CAS  Google Scholar 

  2. Ide, A.G., Baker, N.H. & Warren, S.L. Vascularization of the Brown Pearce rabbit epithelioma transplant as seen in the transparent ear chamber. AJR Am. J. Roentgenol. 42, 891–899 (1939).

    Google Scholar 

  3. Algire, G.H., Chalkley, H.W., Legallais, F.Y. & Park, H.D. Vascular reactions of normal and malignant tissues in vivo. I. Vascular reactions of mice to wounds and to normal and neoplastic transplants. J. Natl. Cancer Inst. 6, 73–85 (1945).

    Article  Google Scholar 

  4. Michaelson, I.C. The mode of development of the vascular system of the retina with some observations on its significance for certain retinal disorders. Trans. Ophthalmol. Soc. U. K. 68, 137–180 (1948).

    Google Scholar 

  5. Folkman, J. Tumor angiogenesis: therapeutic implications. N. Engl. J. Med. 285, 1182–1186 (1971).

    Article  CAS  Google Scholar 

  6. Ferrara, N., Fujii, D.K., Goldsmith, P.C., Widdicombe, J.H. & Weiner, R.I. Transport epithelial characteristics of cultured bovine pituitary follicular cells. Am. J. Physiol. 252, E304–E312 (1987).

    CAS  PubMed  Google Scholar 

  7. Ferrara, N. Vascular endothelial growth factor. Arterioscler. Thromb. Vasc. Biol. 29, 789–791 (2009).

    Article  CAS  Google Scholar 

  8. Abraham, J.A. et al. Nucleotide sequence of a bovine clone encoding the angiogenic protein, basic fibroblast growth factor. Science 233, 545–548 (1986).

    Article  CAS  Google Scholar 

  9. Ferrara, N. & Henzel, W.J. Pituitary follicular cells secrete a novel heparin-binding growth factor specific for vascular endothelial cells. Biochem. Biophys. Res. Commun. 161, 851–858 (1989).

    Article  CAS  Google Scholar 

  10. Leung, D.W., Cachianes, G., Kuang, W.J., Goeddel, D.V. & Ferrara, N. Vascular endothelial growth factor is a secreted angiogenic mitogen. Science 246, 1306–1309 (1989).

    Article  CAS  Google Scholar 

  11. Keck, P.J. et al. Vascular permeability factor, an endothelial cell mitogen related to PDGF. Science 246, 1309–1312 (1989).

    Article  CAS  Google Scholar 

  12. Senger, D.R. et al. Tumor cells secrete a vascular permeability factor that promotes accumulation of ascites fluid. Science 219, 983–985 (1983).

    Article  CAS  Google Scholar 

  13. Houck, K.A., Leung, D.W., Rowland, A.M., Winer, J. & Ferrara, N. Dual regulation of vascular endothelial growth factor bioavailability by genetic and proteolytic mechanisms. J. Biol. Chem. 267, 26031–26037 (1992).

    CAS  PubMed  Google Scholar 

  14. Park, J.E., Keller, G.-A. & Ferrara, N. The vascular endothelial growth factor isoforms (VEGF): differential deposition into the subepithelial extracellular matrix and bioactivity of extracellular matrix-bound VEGF. Mol. Biol. Cell 4, 1317–1326 (1993).

    Article  CAS  Google Scholar 

  15. Shibuya, M. et al. Nucleotide sequence and expression of a novel human receptor-type tyrosine kinase (flt) closely related to the fms family. Oncogene 5, 519–527 (1990).

    CAS  PubMed  Google Scholar 

  16. de Vries, C. et al. The fms-like tyrosine kinase, a receptor for vascular endothelial growth factor. Science 255, 989–991 (1992).

    Article  CAS  Google Scholar 

  17. Terman, B.I. et al. Identification of the KDR tyrosine kinase as a receptor for vascular endothelial cell growth factor. Biochem. Biophys. Res. Commun. 187, 1579–1586 (1992).

    Article  CAS  Google Scholar 

  18. Chung, A.S., Lee, J. & Ferrara, N. Targeting the tumour vasculature: insights from physiological angiogenesis. Nat. Rev. Cancer 10, 505–514 (2010).

    Article  CAS  Google Scholar 

  19. Kim, K.J. et al. Inhibition of vascular endothelial growth factor–induced angiogenesis suppresses tumor growth in vivo. Nature 362, 841–844 (1993).

    Article  CAS  Google Scholar 

  20. Presta, L.G. et al. Humanization of an anti-VEGF monoclonal antibody for the therapy of solid tumors and other disorders. Cancer Res. 57, 4593–4599 (1997).

    CAS  Google Scholar 

  21. Ferrara, N., Hillan, K.J., Gerber, H.P. & Novotny, W. Discovery and development of bevacizumab, an anti-VEGF antibody for treating cancer. Nat. Rev. Drug Discov. 3, 391–400 (2004).

    Article  CAS  Google Scholar 

  22. Davis-Smyth, T., Chen, H., Park, J., Presta, L.G. & Ferrara, N. The second immunoglobulin-like domain of the VEGF tyrosine kinase receptor Flt-1 determines ligand binding and may initiate a signal transduction cascade. EMBO J. 15, 4919–4927 (1996).

    Article  CAS  Google Scholar 

  23. Gerber, H.P. et al. VEGF is required for growth and survival in neonatal mice. Development 126, 1149–1159 (1999).

    CAS  PubMed  Google Scholar 

  24. Gerber, H.P. et al. VEGF couples hypertrophic cartilage remodeling, ossification and angiogenesis during endochondral bone formation. Nat. Med. 5, 623–628 (1999).

    Article  CAS  Google Scholar 

  25. Ferrara, N. et al. Vascular endothelial growth factor is essential for corpus luteum angiogenesis. Nat. Med. 4, 336–340 (1998).

    Article  CAS  Google Scholar 

  26. Ferrara, N. et al. Heterozygous embryonic lethality induced by targeted inactivation of the VEGF gene. Nature 380, 439–442 (1996).

    Article  CAS  Google Scholar 

  27. Carmeliet, P. et al. Abnormal blood vessel development and lethality in embryos lacking a single VEGF allele. Nature 380, 435–439 (1996).

    Article  CAS  Google Scholar 

  28. Shweiki, D., Itin, A., Soffer, D. & Keshet, E. Vascular endothelial growth factor induced by hypoxia may mediate hypoxia-initiated angiogenesis. Nature 359, 843–845 (1992).

    Article  CAS  Google Scholar 

  29. Aiello, L.P. et al. Vascular endothelial growth factor in ocular fluid of patients with diabetic retinopathy and other retinal disorders. N. Engl. J. Med. 331, 1480–1487 (1994).

    Article  CAS  Google Scholar 

  30. Adamis, A.P. et al. Increased vascular endothelial growth factor levels in the vitreous of eyes with proliferative diabetic retinopathy. Am. J. Ophthalmol. 118, 445–450 (1994).

    Article  CAS  Google Scholar 

  31. Lopez, P.F., Sippy, B.D., Lambert, H.M., Thach, A.B. & Hinton, D.R. Transdifferentiated retinal pigment epithelial cells are immunoreactive for vascular endothelial growth factor in surgically excised age-related macular degeneration-related choroidal neovascular membranes. Invest. Ophthalmol. Vis. Sci. 37, 855–868 (1996).

    CAS  PubMed  Google Scholar 

  32. Kvanta, A., Algvere, P.V., Berglin, L. & Seregard, S. Subfoveal fibrovascular membranes in age-related macular degeneration express vascular endothelial growth factor. Invest. Ophthalmol. Vis. Sci. 37, 1929–1934 (1996).

    CAS  PubMed  Google Scholar 

  33. Jager, R.D., Mieler, W.F. & Miller, J.W. Age-related macular degeneration. N. Engl. J. Med. 358, 2606–2617 (2008).

    Article  CAS  Google Scholar 

  34. Aiello, L.P. et al. Suppression of retinal neovascularization in vivo by inhibition of vascular endothelial growth factor (VEGF) using soluble VEGF-receptor chimeric proteins. Proc. Natl. Acad. Sci. USA 92, 10457–10461 (1995).

    Article  CAS  Google Scholar 

  35. Adamis, A.P. et al. Inhibition of vascular endothelial growth factor prevents retinal ischemia-associated iris neovascularization in a nonhuman primate. Arch. Ophthalmol. 114, 66–71 (1996).

    Article  CAS  Google Scholar 

  36. Campochiaro, P.A. & Hackett, S.F. Ocular neovascularization: a valuable model system. Oncogene 22, 6537–6548 (2003).

    Article  CAS  Google Scholar 

  37. Ferris, F.L., III, Fine, S.L. & Hyman, L. Age-related macular degeneration and blindness due to neovascular maculopathy. Arch. Ophthalmol. 102, 1640–1642 (1984).

    Article  Google Scholar 

  38. Ferrara, N., Damico, L., Shams, N., Lowman, H. & Kim, R. Developmemt of Ranibizumab, an anti-vascular endothelial growth factor antigen binding fragment, as therapy for neovascular age-related macular degeneration. Retina 26, 859–870 (2006).

    Article  Google Scholar 

  39. Raghavan, M. & Bjorkman, P.J. Fc receptors and their interactions with immunoglobulins. Annu. Rev. Cell Dev. Biol. 12, 181–220 (1996).

    Article  CAS  Google Scholar 

  40. Chen, Y. et al. Selection and analysis of an optimized anti-VEGF antibody: crystal structure of an affinity-matured Fab in complex with antigen. J. Mol. Biol. 293, 865–881 (1999).

    Article  CAS  Google Scholar 

  41. Krzystolik, M.G. et al. Prevention of experimental choroidal neovascularization with intravitreal anti-vascular endothelial growth factor antibody fragment. Arch. Ophthalmol. 120, 338–346 (2002).

    Article  CAS  Google Scholar 

  42. Rosenfeld, P.J. et al. Ranibizumab for neovascular age-related macular degeneration. N. Engl. J. Med. 355, 1419–1431 (2006).

    Article  CAS  Google Scholar 

  43. Brown, D.M. et al. Ranibizumab versus verteporfin for neovascular age-related macular degeneration. N. Engl. J. Med. 355, 1432–1444 (2006).

    Article  CAS  Google Scholar 

  44. Brown, D.M. et al. Ranibizumab versus verteporfin photodynamic therapy for neovascular age-related macular degeneration: Two-year results of the ANCHOR study. Ophthalmology 116, 57–65 (2009).

    Article  Google Scholar 

  45. Brown, D.M. et al. Ranibizumab for macular edema following central retinal vein occlusion: six-month primary end point results of a phase III study. Ophthalmology 117, 1124–1133 (2010).

    Article  Google Scholar 

  46. Campochiaro, P.A. et al. Ranibizumab for macular edema following branch retinal vein occlusion: six-month primary end point results of a phase III study. Ophthalmology 117, 1102–1112 (2010).

    Article  Google Scholar 

  47. Treatment of age-related macular degeneration with photodynamic therapy (TAP) Study Group. Photodynamic therapy of subfoveal choroidal neovascularization in age-related macular degeneration with verteporfin. one-year results of 2 randomized clinical trials—TAP Report 1. Arch. Ophthalmol. 117, 1329–1345 (1999).

  48. Gragoudas, E.S., Adamis, A.P., Cunningham, E.T. Jr., Feinsod, M. & Guyer, D.R. Pegaptanib for neovascular age-related macular degeneration. N. Engl. J. Med. 351, 2805–2816 (2004).

    Article  CAS  Google Scholar 

  49. Nagy, J.A. et al. Permeability properties of tumor surrogate blood vessels induced by VEGF-A. Lab. Invest. 86, 767–780 (2006).

    Article  CAS  Google Scholar 

  50. Motiejunaite, R. & Kazlauskas, A. Pericytes and ocular diseases. Exp. Eye Res. 86, 171–177 (2008).

    Article  CAS  Google Scholar 

  51. Yuan, F. et al. Time-dependent vascular regression and permeability changes in established human tumor xenografts induced by an anti-vascular endothelial growth factor/vascular permeability factor antibody. Proc. Natl. Acad. Sci. USA 93, 14765–14770 (1996).

    Article  CAS  Google Scholar 

  52. Benjamin, L.E., Golijanin, D., Itin, A., Pode, D. & Keshet, E. Selective ablation of immature blood vessels in established human tumors follows vascular endothelial growth factor withdrawal. J. Clin. Invest. 103, 159–165 (1999).

    Article  CAS  Google Scholar 

  53. Jain, R.K. Normalization of tumor vasculature: an emerging concept in antiangiogenic therapy. Science 307, 58–62 (2005).

    Article  CAS  Google Scholar 

  54. Bressler, N.M., Bressler, S.B. & Fine, S.L. Neovascular (exudative) age-related macular degeneration. in Retina vol. 2 (ed. Ryan, S.J.) 1075–1113 (Elsevier/Mosby, 2006).

    Chapter  Google Scholar 

  55. Macular Photocoagulation Study Group. Subfoveal neovascular lesions in age-related macular degeneration. Arch. Opthalmol. 109, 1242–1257 (1991).

  56. Ferrara, N. Binding to the extracellular matrix and proteolytic processing: two key mechanisms regulating vascular endothelial growth factor action. Mol. Biol. Cell 21, 687–690 (2010).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

It would be difficult to name all the contributors to a program that began 15 years ago. I thank all the ranibizumab team members. I wish to thank my current and former lab members. I am especially grateful to the following past and present colleagues and collaborators: H. Lowman, L. Presta, A. Cuthbertson, T. Adamis, J. Miller, L. D'Amico, R. Kim, T. Ianchulev & K. Hillan. I also wish to thank the ranibizumab clinical investigators. I thank my wife, Chika, for her understanding and support. I wish to express my sincere gratitude to the Lasker Foundation for conferring on me such a wonderful and prestigious award that I accept on behalf of my colleagues.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Napoleone Ferrara.

Ethics declarations

Competing interests

N.F. is an employee of Genentech.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ferrara, N. Vascular endothelial growth factor and age-related macular degeneration: from basic science to therapy. Nat Med 16, 1107–1111 (2010). https://doi.org/10.1038/nm1010-1107

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm1010-1107

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing