Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Dendritic cells genetically modified to express CD40 ligand and pulsed with antigen can initiate antigen-specific humoral immunity independent of CD4+ T cells

Abstract

We have investigated whether dendritic cells genetically modified to express CD40 ligand and pulsed with antigen can trigger B cells to produce antigen-specific antibodies without CD4+ T-cell help. Dendritic cells modified with a recombinant adenovirus vector to express CD40 ligand and pulsed with heat-killed Pseudomonas induced naive B cells to produce antibodies against Pseudomonas in the absence of CD4+ T cells in vitro, initiated Pseudomonas-specific humoral immune responses in vivo in wild-type and CD4−/− mice, and protected immunized wild-type and CD4−/−, but not B-cell−/− mice, from lethal intrapulmonary challenge with Pseudomonas. Thus, genetic modification of dendritic cells with CD40 ligand enables them to present a complex mixture of microbial antigens and establish CD4+ T cell-independent, B cell-mediated protective immunity against a specific microbe.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Activation of dendritic cells by genetic modification with the mouse CD40L cDNA.
Figure 2: Nonspecific B-cell proliferation induced by co-culture of mCD40L-modified DCs and syngeneic B cells.
Figure 3: Ability of AdmCD40L-modified DCs pulsed with P. aeruginosa to directly induce naive B cells to secrete P. aeruginosa-specific antibody in vitro in the absence of CD4+ T cells.
Figure 4: P. aeruginosa-specific antibodies generated in vivo in wild-type mice immunized with AdmCD40L-modified DCs pulsed with Pseudomonas.
Figure 5: P. aeruginosa-specific antibodies generated in CD4−/− C57Bl/6 mice immunized with AdmCD40L-modified DCs pulsed with Pseudomonas.immunized CD4−/− mice, n; immunized wild-type mice, ¤; immunized wild-type mice, non-immunized wild-type mice, .
Figure 6: Mice immunized with AdmCD40L-modified DCs pulsed with P. aeruginosa develop Pseudomonas-specific, CD4+ T cell-independent, B cell-dependent protection against lethal bronchopulmonary infection of P. aeruginosa.

Similar content being viewed by others

References

  1. Banchereau, J. & Steinman, R.M. Dendritic cells and the control of immunity. Nature 392, 245–252 (1998).

    Article  CAS  Google Scholar 

  2. Grewal, I.S. & Flavell, R.A. CD40 and CD154 in cell-mediated immunity. Annu. Rev. Immunol. 16, 111–135 (1998).

    Article  CAS  Google Scholar 

  3. Van Kooten, C. & Banchereau, J. CD40-CD40 ligand: a multifunctional receptor-ligand pair. Adv. Immunol. 61, 1–77 (1996).

    Article  CAS  Google Scholar 

  4. Reis, Sher, A. & Kaye, P. The role of dendritic cells in the induction and regulation of immunity to microbial infection. Curr. Opin. Immunol. 11, 392–399 (1999).

    Article  Google Scholar 

  5. Timmerman, J.M. & Levy, R. Dendritic cell vaccines for cancer immunotherapy. Annu. Rev. Med. 50, 507–529 (1999).

    Article  CAS  Google Scholar 

  6. Clark, E.A. & Ledbetter, J.A. How B and T cells talk to each other. Nature 367, 425– 428 (1994).

    Article  CAS  Google Scholar 

  7. Gold, M.R. & De Franco, A.L. Biochemistry of B lymphocyte activation. Adv. Immunol. 55, 221–295 (1994).

    Article  CAS  Google Scholar 

  8. Svensson, M., Stockinger, B. & Wick, M.J. Bone marrow-derived dendritic cells can process bacteria for MHC-I and MHC-II presentation to T cells. J. Immunol. 158, 4229–4236 (1997).

    CAS  PubMed  Google Scholar 

  9. Kovacs, J.A. & Masur, H. Prophylaxis against opportunistic infections in patients with human immunodeficiency virus infection. N. Engl J. Med. 342, 1416–1429 (2000).

    Article  CAS  Google Scholar 

  10. Baba, T.W. et al. Human neutralizing monoclonal antibodies of the IgG1 subtype protect against mucosal simian-human immunodeficiency virus infection. Nature Med. 6, 200–206 ( 2000).

    Article  CAS  Google Scholar 

  11. Mascola, J.R. et al. Protection of macaques against vaginal transmission of a pathogenic HIV-1/SIV chimeric virus by passive infusion of neutralizing antibodies. Nature Med. 6, 207–210 ( 2000).

    Article  CAS  Google Scholar 

  12. Worgall, S., Singh, R. & Crystal, R.G. Dendritic cells pulsed with Pseudomonas protect against lethal pulmonary Pseudomonas infection in mice. Pediatr. Pulmonol. 19, 311 (1999 ).

    Google Scholar 

  13. Dubois, B. et al. Dendritic cells enhance growth and differentiation of CD40-activated B lymphocytes. J. Exp. Med 185, 941– 951 (1997).

    Article  CAS  Google Scholar 

  14. Fayette, J. et al. Human dendritic cells skew isotype switching of CD40-activated naive B cells towards IgA1 and IgA2. J. Exp. Med 185 , 1909–1918 (1997).

    Article  CAS  Google Scholar 

  15. Dubois, B. et al. Critical role of IL-12 in dendritic cell-induced differentiation of naive B lymphocytes. J. Immunol. 161, 2223–2231 (1998).

    CAS  PubMed  Google Scholar 

  16. Kikuchi, T., Moore, M.A.S. & Crystal, R.G. Dendritic cells modified to express CD40 ligand elicit therapeutic immunity against pre-existing murine tumors. Blood 96, 91–99 ( 2000).

    CAS  PubMed  Google Scholar 

  17. Barr, T.A. & Heath, A.W. Enhanced in vivo immune responses to bacterial lipopolysaccharide by exogenous CD40 stimulation. Infect. Immun. 67, 3637–3640 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Dullforce, P., Sutton, D.C. & Heath, A.W. Enhancement of T cell-independent immune responses in vivo by CD40 antibodies. Nature Med 4, 88–91 (1998).

    Article  CAS  Google Scholar 

  19. Ferlin, W.G. et al. The induction of a protective response in Leishmania major-infected BALB/c mice with anti-CD40 mAb. Eur. J. Immunol. 28 , 525–531 (1998).

    Article  CAS  Google Scholar 

  20. Gurunathan, S. et al. CD40 ligand/trimer DNA enhances both humoral and cellular immune responses and induces protective immunity to infectious and tumor challenge . J. Immunol. 161, 4563– 4571 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Beland, J.L. et al. Recombinant CD40L treatment protects allogeneic murine bone marrow transplant recipients from death caused by herpes simplex virus-1 infection . Blood 92, 4472–4478 (1998).

    CAS  PubMed  Google Scholar 

  22. Wiley, J.A., Geha, R. & Harmsen, A.G. Exogenous CD40 ligand induces a pulmonary inflammation response. J. Immunol. 158, 2932– 2938 (1997).

    CAS  PubMed  Google Scholar 

  23. Brown, M.P. et al. Thymic lymphoproliferative disease after successful correction of CD40 ligand deficiency by gene transfer in mice. Nature Med. 4, 1253–1260 ( 1998).

    Article  CAS  Google Scholar 

  24. Anderson, W.F. Human gene therapy. Nature 392, 25– 30 (1998).

    Article  CAS  Google Scholar 

  25. Crystal, R.G. Transfer of genes to humans: Early lessons and obstacles to success. Science 270, 404–410 ( 1995).

    Article  CAS  Google Scholar 

  26. Wilson, J.M. Adenoviruses as gene-delivery vehicles. N. Engl. J. Med. 334, 1185–1187 (1996).

    Article  CAS  Google Scholar 

  27. Kikuchi, T. & Crystal, R.G. Anti-tumor immunity induced by in vivo adenovirus vector-mediated expression of CD40 ligand in tumor cells. Hum. Gene Ther. 10, 1375 –1387 (1999).

    Article  CAS  Google Scholar 

  28. Hersh, J., Crystal, R.G. & Bewig, B. Modulation of gene expression after replication-deficient, recombinant adenovirus-mediated gene transfer by the product of a second adenovirus vector. Gene Ther. 2, 124– 131 (1995).

    CAS  PubMed  Google Scholar 

  29. Rosenfeld, M.A. et al. Adenovirus-mediated transfer of a recombinant alpha 1- antitrypsin gene to the lung epithelium in vivo. Science 252, 431–434 (1991).

    Article  CAS  Google Scholar 

  30. Rosenfeld, M.A. et al. In vivo transfer of the human cystic fibrosis transmembrane conductance regulator gene to the airway epithelium. Cell 68, 143–155 (1992).

    Article  CAS  Google Scholar 

  31. Crystal, R.G. et al. Administration of an adenovirus containing the human CFTR cDNA to the respiratory tract of individuals with cystic fibrosis. Nature Genet. 8, 42–51 ( 1994).

    Article  CAS  Google Scholar 

  32. Song, W. et al. Dendritic cells genetically modified with an adenovirus vector encoding the cDNA for a model antigen induce protective and therapeutic antitumor immunity. J. Exp. Med. 186, 1247– 1256 (1997).

    Article  CAS  Google Scholar 

  33. Stevenson, M.M., Kondratieva, T.K., Apt, A.S., Tam, M.F. & Skamene, E. In vitro and in vivo T cell responses in mice during bronchopulmonary infection with mucoid Pseudomonas aeruginosa. Clin. Exp. Immunol. 99, 98–105 (1995).

    Article  CAS  Google Scholar 

  34. Starke, J.R., Edwards, M.S., Langston, C. & Baker, C.J. A mouse model of chronic pulmonary infection with Pseudomonas aeruginosa and Pseudomonas cepacia. Pediatr. Res. 22, 698–702 (1987).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank N. Mohamed for help in preparing this manuscript. These studies were supported, in part, by National Institutes of Health grant P01 HL51746-06A1, the Will Rogers Memorial Fund (Los Angeles, California), the Cystic Fibrosis Foundation (Bethesda, Maryland) and GenVec (Gaithersburg, Maryland).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ronald G Crystal.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kikuchi, T., Worgall, S., Singh, R. et al. Dendritic cells genetically modified to express CD40 ligand and pulsed with antigen can initiate antigen-specific humoral immunity independent of CD4+ T cells. Nat Med 6, 1154–1159 (2000). https://doi.org/10.1038/80498

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/80498

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing