Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Loss of p14ARF in tumor cells facilitates replication of the adenovirus mutant dl1520 (ONYX-015)

Abstract

The adenovirus mutant dl1520 (ONYX-015) does not express the E1B-55K protein that binds and inactivates p53. This virus replicates in tumor cells with mutant p53, but not in normal cells with functional p53. Although intra-tumoral injection of dl1520 shows promising responses in patients with solid tumors, previous in vitro studies have not established a close correlation between p53 status and dl1520 replication. Here we identify loss of p14ARF as a mechanism that allows dl1520 replication in tumor cells retaining wild-type p53. We demonstrate that the re-introduction of p14ARF into tumor cells with wild-type p53 suppresses replication of dl1520 in a p53-dependent manner. Our study supports the therapeutic use of dl1520 in tumors with lesions within the p53 pathway other than mutation of p53.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Response of p53, p21WAF1/CIP1 and Mdm2 in HCT 116 TP53+/+ cells following adenovirus infection.
Figure 2: The adenovirus E1A protein activates p53 independently of p14ARF in HCT 116 TP53+/+ cells.
Figure 3: p14ARF protein levels in normal cells and A2780 cells.
Figure 4: Effect of p14ARF re-introduction into HCT116 TP53+/+ cells on p53.
Figure 5: p14ARF protects HCT116 TP53+/+ cells from lysis by dl1520 replication.

Similar content being viewed by others

References

  1. Fearon, E.R., Hamilton, S.R. & Vogelstein, B. Clonal analysis of human colorectal tumors. Science 238, 193–197 (1987).

    Article  CAS  Google Scholar 

  2. Chang, F., Syrjanen, S. & Syrjanen, K. Implications of the p53 tumor-suppressor gene in clinical oncology. J. Clin. Oncol. 13, 1009–1022 (1995).

    Article  CAS  Google Scholar 

  3. Lowe, S.W. et al. p53 status and the efficacy of cancer therapy in vivo. Science 266, 807–810 (1994).

    Article  CAS  Google Scholar 

  4. Bergh, J., Norberg, T., Sjogren, S., Lindgren, A. & Holmberg, L. Complete sequencing of the p53 gene provides prognostic information in breast cancer patients, particularly in relation to adjuvant systemic therapy and radiotherapy. Nature Med. 1, 1029–1034 (1995).

    Article  CAS  Google Scholar 

  5. Barker, D.D. & Berk, A.J. Adenovirus proteins from both E1B reading frames are required for transformation of rodent cells by viral infection and DNA transfection. Virology 156, 107–121 (1987).

    Article  CAS  Google Scholar 

  6. Ganly, I. et al. A phase I study of Onyx-015, an E1B attenuated adenovirus, administered intratumorally to patients with recurrent head and neck cancer. Clin. Cancer Res. 6, 798–806 (2000).

    CAS  PubMed  Google Scholar 

  7. Khuri, F.R. et al. A controlled trial of intratumoral ONYX-015, a selectively-replicating adenovirus, in combination with cisplatin and 5-fluorouracil in patients with recurrent head and neck cancer. Nature Med. 6, 879–885 (2000).

    Article  CAS  Google Scholar 

  8. Heise, C. et al. ONYX-015, an E1B gene-attenuated adenovirus, causes tumor-specific cytolysis and antitumoral efficacy that can be augmented by standard chemotherapeutic agents. Nature Med. 3, 639–645 (1997).

    Article  CAS  Google Scholar 

  9. Bischoff, J.R. et al. An adenovirus mutant that replicates selectively in p53-deficient human tumor cells. Science 274, 373–376 (1996).

    Article  CAS  Google Scholar 

  10. Goodrum, F.D. & Ornelles, D.A. p53 status does not determine outcome of E1B 55-kilodalton mutant adenovirus lytic infection. J. Virol. 72, 9479–9490 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Turnell, A.S., Grand, R.J. & Gallimore, P.H. The replicative capacities of large E1B-null group A and group C adenoviruses are independent of host cell p53 status. J. Virol. 73, 2074–2083 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Rothmann, T., Hengstermann, A., Whitaker, N.J., Scheffner, M. & zur Hausen, H. Replication of ONYX-015, a potential anticancer adenovirus, is independent of p53 status in tumor cells. J. Virol. 72, 9470–9478 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Harada, J.N. & Berk, A.J. p53-independent and -dependent requirements for E1B-55K in adenovirus type 5 replication. J. Virol. 73, 5333–5344 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Piette, J., Neel, H. & Marechal, V. Mdm2: keeping p53 under control. Oncogene 15, 1001–1010 (1997).

    Article  CAS  Google Scholar 

  15. Kamijo, T. et al. Functional and physical interactions of the ARF tumor suppressor with p53 and Mdm2. Proc. Natl Acad. Sci. USA 95, 8292–8297 (1998).

    Article  CAS  Google Scholar 

  16. Pomerantz, J. et al. The Ink4a tumor suppressor gene product, p19Arf, interacts with MDM2 and neutralizes MDM2's inhibition of p53. Cell 92, 713–723 (1998).

    Article  CAS  Google Scholar 

  17. Waldman, T., Kinzler, K.W. & Vogelstein, B. p21 is necessary for the p53-mediated G1 arrest in human cancer cells. Cancer Res. 55, 5187–5190 (1995).

    CAS  PubMed  Google Scholar 

  18. Bunz, F. et al. Requirement for p53 and p21 to sustain G2 arrest after DNA damage. Science 282, 1497–1501 (1998).

    Article  CAS  Google Scholar 

  19. Di Leonardo, A., Linke, S.P., Clarkin, K. & Wahl, G.M. DNA damage triggers a prolonged p53-dependent G1 arrest and long-term induction of Cip1 in normal human fibroblasts. Genes Dev. 8, 2540–2551 (1994).

    Article  CAS  Google Scholar 

  20. Barak, Y., Juven, T., Haffner, R. & Oren, M. mdm2 expression is induced by wild type p53 activity. EMBO J. 12, 461–468 (1993).

    Article  CAS  Google Scholar 

  21. Stott, F.J. et al. The alternative product from the human CDKN2A locus, p14(ARF), participates in a regulatory feedback loop with p53 and MDM2. EMBO J. 17, 5001–5014 (1998).

    Article  CAS  Google Scholar 

  22. Bates, S. et al. p14ARF links the tumour suppressors RB and p53. Nature 395, 124–125 (1998).

    Article  CAS  Google Scholar 

  23. de Stanchina, E. et al. E1A signaling to p53 involves the p19(ARF) tumor suppressor. Genes Dev. 12, 2434–2442 (1998).

    Article  CAS  Google Scholar 

  24. Weber, J.D., Taylor, L.J., Roussel, M.F., Sherr, C.J. & Bar-Sagi, D. Nucleolar Arf sequesters Mdm2 and activates p53. Nature Cell Biol. 1, 20–26 (1999).

    Article  CAS  Google Scholar 

  25. Zhang, Y. & Xiong, Y. Mutations in human ARF exon 2 disrupt its nucleolar localization and impair its ability to block nuclear export of MDM2 and p53. Mol. Cell 3, 579–591 (1999).

    Article  CAS  Google Scholar 

  26. Brown, R. et al. Increased accumulation of p53 protein in cisplatin-resistant ovarian cell lines. Int. J. Cancer 55, 678–684 (1993).

    Article  CAS  Google Scholar 

  27. Steegenga, W.T., Riteco, N. & Bos, J.L. Infectivity and expression of the early adenovirus proteins are important regulators of wild-type and DeltaE1B adenovirus replication in human cells. Oncogene 18, 5032–5043 (1999).

    Article  CAS  Google Scholar 

  28. Billon, N., van Grunsven, L.A. & Rudkin, B.B. The CDK inhibitor p21WAF1/Cip1 is induced through a p300-dependent mechanism during NGF-mediated neuronal differentiation of PC12 cells. Oncogene 13, 2047–2054 (1996).

    CAS  PubMed  Google Scholar 

  29. Roth, J., Dobbelstein, M., Freedman, D.A., Shenk, T. & Levine, A.J. Nucleo-cytoplasmic shuttling of the hdm2 oncoprotein regulates the levels of the p53 protein via a pathway used by the human immunodeficiency virus rev protein. EMBO J. 17, 554–564 (1998).

    Article  CAS  Google Scholar 

  30. Dobner, T., Horikoshi, N., Rubenwolf, S. & Shenk, T. Blockage by adenovirus E4orf6 of transcriptional activation by the p53 tumor suppressor. Science 272, 1470–1473 (1996).

    Article  CAS  Google Scholar 

  31. Tao, W. & Levine, A.J. P19(ARF) stabilizes p53 by blocking nucleo-cytoplasmic shuttling of Mdm2. Proc. Natl Acad. Sci. USA 96, 6937–6941 (1999).

    Article  CAS  Google Scholar 

  32. Schmitt, C.A., McCurrach, M.E., de Stanchina, E., Wallace-Brodeur, R.R. & Lowe, S.W. INK4a/ARF mutations accelerate lymphomagenesis and promote chemoresistance by disabling p53. Genes Dev. 13, 2670–2677 (1999).

    Article  CAS  Google Scholar 

  33. Hall, A.R., Dix, B.R., O'Carroll, S.J. & Braithwaite, A.W. p53-dependent cell death/apoptosis is required for a productive adenovirus infection. Nature Med. 4, 1068–1072 (1998).

    Article  CAS  Google Scholar 

  34. Babiss, L.E., Ginsberg, H.S. & Darnell, J.E., Jr. Adenovirus E1B proteins are required for accumulation of late viral mRNA and for effects on cellular mRNA translation and transport. Mol. Cell. Biol. 5, 2552–2558 (1985).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank B. Vogelstein and F. Bunz for the HCT116 cell lines; E. Lees for the p14ARF antibody and the pCMV-p14ARFexpression plasmid; H. Jiang, Y.J. Shen and O. Tetsu for technical advice; J. Giovanola and K. Halfmeyer for technical assistance; D. Moore for helping with the statistical analysis; A. Fattaey, L. Johnson, C. O'Shea and J. Lyons for suggestions and reagents; and B. Bastian for discussions. S.J.R. is a recipient of a fellowship as part of the “Gemeinsames Hochschulsonderprogramm III von Bund und Ländern” granted by the German Academic Exchange Service, DAAD. C.H.B. is the recipient of a fellowship granted by the Deutsche Forschungsgemeinschaft (DFG).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. Michael Korn.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ries, S., Brandts, C., Chung, A. et al. Loss of p14ARF in tumor cells facilitates replication of the adenovirus mutant dl1520 (ONYX-015). Nat Med 6, 1128–1133 (2000). https://doi.org/10.1038/80466

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/80466

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing