Access options
Subscribe to Journal
Get full journal access for 1 year
$225.00
only $18.75 per issue
All prices are NET prices.
VAT will be added later in the checkout.
Rent or Buy article
Get time limited or full article access on ReadCube.
from$8.99
All prices are NET prices.







References
- 1
Schoenheimer, R. The Dynamic State of Body Constituents (Harvard University Press, Cambridge, Massachusetts, 1942).
- 2
Schimke, R.T. & Doyle, D. Control of enzyme levels in animal tissues. Annu. Rev. Biochem. 39, 929–979 (1971).
- 3
Haider, M. & Segal, H.L. Some characteristics of the alanine aminotransferase- and arginase-inactivating system of lysosomes. Arch. Biochem. Biophys. 148, 228–237 (1972).
- 4
Hershko, A. & Tomkins, G.M. Studies on the degradation of tyrosine aminotransferase in hepatoma cells in culture. Influence of the composition of the medium and adenosine triphosphate dependence. J. Biol. Chem. 246, 710–714 (1971).
- 5
Simpson, M.V. The release of labeled amino acids from proteins in liver slices. J. Biol. Chem. 201, 143–154 (1953).
- 6
Hershko, A. & Ciechanover, A. Mechanisms of intracellular protein breakdown. Annu. Rev. Biochem. 51, 335–364 (1982).
- 7
Etlinger, J.D. & Goldberg, A.L. A soluble ATP-dependent proteolytic system responsible for the degradation of abnormal proteins in reticulocytes. Proc. Natl. Acad. Sci. USA. 74, 54–58 (1977).
- 8
Ciechanover, A., Hod, Y. & Hershko, A. a heat-stable polypeptide component of an ATP-dependent proteolytic system from reticulocytes. Biochem. Biophys. Res. Commun. 81, 1100–1105 (1978).
- 9
Wilkinson, K.D., Urban, M.K. & Haas, A.L. Ubiquitin is the ATP-dependent proteolysis factor of rabbit reticulocytes. J. Biol. Chem. 255, 7529–7532 (1980).
- 10
Goldstein, G. et al. Isolation of a polypeptide that has lymphocyte-differentiating properties and is probably represented universally in living cells. Proc. Natl. Acad. Sci. USA. 72, 11–15 (1975).
- 11
Goldknopf, I.L. & Busch, H. Isopeptide linkage between nonhistone and histone A polypeptides of chromosomal conjugate protein A24. Proc. Natl. Acad. Sci. USA. 74, 864–868 (1977).
- 12
Ciechanover, A., Heller, H., Elias, S., Haas, A. L. & Hershko, A. ATP-dependent conjugation of reticulocyte proteins with the polypeptide required for protein degradation. Proc. Natl. Acad. Sci. USA. 77, 1365–1368 (1980).
- 13
Hershko, A., Ciechanover, A, Heller, H., Haas, A. L. & Rose, I. A. Proposed role of ATP in protein breakdown: conjugation of proteins with multiple chains of the polypeptide of ATP-dependent proteolysis. Proc. Natl. Acad. Sci. USA. 77, 1783–1786 (1980).
- 14
Lam, Y.A., Xu, W., DeMartino, G.N. & Cohen, R.E. Editing of ubiquitin conjugates by an isopeptidase of the 26S proteasome. Nature 385, 737–740 (1997).
- 15
Hershko, A. & Ciechanover, A. The ubiquitin system. Annu. Rev. Biochem. 67, 425–479 (1998).
- 16
Hershko, A., Heller, H., Elias, S. & Ciechanover, A. Components of ubiquitin-protein ligase system: resolution, affinity purification and role in protein breakdown. J. Biol. Chem. 258, 8206–8214 (1983).
- 17
Hershko, A., Heller, A., Eytan, E. & Reiss, Y. The protein binding site of the ubiquitin-protein ligase system. J. Biol. Chem. 261, 11992–11999 (1986).
- 18
Hough, R., Pratt, G. & Rechsteiner, M. Ubiquitin-lysozyme conjugates. Identification and characterization of an ATP-dependent protease from rabbit reticulocyte lysates. J. Biol. Chem. 261, 2400–2408 (1986).
- 19
Hershko, A. Lessons from the discovery of the ubiquitin system. Trends Biochem. Sci. 21, 445–449 (1996).
- 20
Hershko, A., Heller, H., Ganoth, D. & Ciechanover, A. in Protein Turnover and Lysosome Function (eds. Segal, H.L. & Doyle, D.J.) 149–169 (Academic Press, New York, 1978).
- 21
Ciechanover, A., Elias, S., Heller, H., Ferber, S. & Hershko, A. Characterization of the heat-stable polypeptide of the ATP-dependent proteolytic system from reticulocytes. J. Biol. Chem. 255, 7525–7528 (1980).
- 22
Wilkinson, K.D., Urban, M.K. & Haas, A.L. Ubiquitin is the ATP-dependent proteolysis factor I of rabbit reticulocytes. J. Biol. Chem. 255, 7529–7532 (1980).
- 23
Hershko, A. & Heller, H. Occurrence of a polyubiquitin structure in ubiquitin-protein conjugates. Biochem. Biophys. Res. Common. 128, 1079–1086 (1985).
- 24
Chau, V. et al. A multiubiquitin chain is confined to specific Lysine in a targeted short-lived protein. Science 243, 1576–1583 (1989).
- 25
Lipmann, F, Gevers, W., Kleinkauf, H. & Roskoski, R. Jr. Polypeptide synthesis on protein templates: The enzymatic synthesis of gramicidin S and tyrocidine. Adv. Enzymol. Relat. Areas Mol. Biol. 35, 1–34 (1971).
- 26
Ciechanover, A., Elias, S., Heller, H. & Hershko, A. “Covalent affinity” purification of ubiquitin activating enzyme. J. Biol. Chem. 257, 2537–2542 (1982).
- 27
Hershko, A., Eytan, E., Ciechanover, A. & Haas, A.L. Immunochemical analysis of the turnover of ubiquitin-protein conjugates in intact cells: Relationship to the breakdown of abnormal proteins. J. Biol. Chem. 257, 13964–13970 (1982).
- 28
Finley, D., Ciechanover, A. & Varshavsky, A. . Thermolability of ubiquitin-activating enzyme from the mammalian cell cycle mutant ts85. Cell 37, 43–55 (1984).
- 29
Ciechanover, A., Finley D. & Varshavsky, A. Ubiquitin dependence of selective protein degradation demonstrated in the mammalian cell cycle mutant ts85. Cell 37, 57–66 (1984).
- 30
Ferber, S. & Ciechanover, A. Transfer RNA is required for conjugation of ubiquitin to selective substrates of the ubiquitin- and ATP-dependent proteolytic system. J. Biol. Chem. 261, 3128–3134 (1986).
- 31
Ferber, S. & Ciechanover, A. Role of arginine-tRNA in protein degradation by the ubiquitin pathway. Nature 326, 808–811 (1987).
- 32
Varshavsky, A. The N-end rule pathway of protein degradation. Genes Cells 2, 13–28 (1997).
- 33
Hershko, A., Heller, H., Eytan, E., Kaklij, G. & Rose, I.A. Role of α-amino group of protein in ubiquitin-mediated protein breakdown. Proc. Natl. Acad. Sci. USA 81, 7021–7025 (1984).
- 34
Mayer, A. Siegel, N.R., Schwartz, A.L. & Ciechanover, A. Degradation of proteins with acetylated amino termini by the ubiquitin system. Science 244, 1480–1483 (1989).
- 35
Scheffner, M., Werness, B.A., Huibregtse, J.M., Levine, A.J. & Howley, P.M. The E6 oncoprotein encoded by human papillomavirus types 16 and 18 promotes the degradation of p53. Cell 63, 1129–1136 (1990).
- 36
Glotzer, M., Murray, A.W. & Kirschner M.W. Cyclin is degraded by the ubiquitin pathway. Nature 349, 132–138 (1991).
- 37
Hershko, A., Ganoth, D., Pehrson, J., Palazzo, R.E., & Cohen, L.H. . Methylated ubiquitin inhibits cyclin degradation in clam embryo extracts. J. Biol. Chem. 266, 16376–16379 (1991).
- 38
Ciechanover, A. et al. Degradation of nuclear oncoproteins by the ubiquitin system in vitro. Proc. Natl. Acad. Sci. USA 88, 139–143 (1991).
- 39
Ciechanover, A., Orian, A. & Schwartz, A.L.. Ubiquitin-mediated proteolysis: Biological regulation via destruction. BioEssays 22, 442–451 (2000).
- 40
Yaron, A. et al. Inhibition of NF-κB cellular function via specific targeting of the IκBα-ubiquitin ligase. EMBO J. 16, 6486–6494 (1997).
- 41
Butz, K., Denk, C., Ullmann, A., Scheffner, M. & Hoppe-Seyler, F. Induction of apoptosis in human papillomavirus positive cancer cells by peptide aptamers targeting the viral E6 oncoprotein. Proc. Natl. Acad. Sci. USA 97, 6693–6697 (2000).
- 42
Finley, D., Özkaynak, E. & Varshavsky, A. The yeast polyubiquitin gene is essential for resistance to high temperatures, starvation, and other stresses. Cell 48, 1035–1046 (1987).
- 43
Jentsch, S., McGrath, J.P. & Varshavsky, A. The yeast DNA repair gene RAD6 encodes a ubiquitin-conjugating enzyme. Nature 329, 131–134 (1987).
- 44
Goebl, M.G. et al. The yeast cell cycle gene CDC34 encodes a ubiquitin-conjugating enzyme. Science 241, 1331–1335 (1988).
- 45
Finley, D., Bartel, B. & Varshavsky, A. The tails of ubiquitin precursors are ribosomal proteins whose fusion to ubiquitin facilitates ribosome biogenesis. Nature 338, 394–401 (1989).
- 46
Bachmair, A., Finley, D. & Varshavsky, A. In vivo half-life of a protein is a function of its amino-terminal residue. Science 234, 179–186 (1986).
- 47
Varshavsky, A. Ubiquitin fusion technique and its descendants. Meth. Enzymol. 327, 578–593 (2000).
- 48
Varshavsky, A. The N-end rule: functions, mysteries, uses. Proc. Natl. Acad. Sci. USA 93, 12142–12149 (1996).
- 49
Johnson, E. S., Ma, P. C., Ota, I. M. & Varshavsky, A. A proteolytic pathway that recognizes ubiquitin as a degradation signal. J. Biol. Chem. 270, 17442–17456 (1995).
- 50
Suzuki, T. & Varshavsky, A. Degradation signals in the lysine-asparagine sequence space. EMBO J. 18, 6017–6026 (1999).
- 51
Varshavsky, A. The ubiquitin system. Trends Biochem. Sci. 22, 383–387 (1997).
- 52
Xie, Y. & Varshavsky, A. Physical association of ubiquitin ligases and the 26S proteasome. Proc. Natl. Acad. Sci. USA 97, 2497–2502 (2000).
- 53
Johnson, E.S., Gonda, D.K. & Varshavsky, A. Cis-trans recognition and subunit-specific degradation of short-lived proteins. Nature 346, 287–291 (1990).
- 54
Kwon, Y.T. et al. Altered activity, social behavior, and spatial memory in mice lacking the NTAN1p amidase and the asparagine branch of the N-end rule pathway. Mol. Cell. Biol. 20, 4135–4148 (2000).
- 55
Davydov, I.V. & Varshavsky, A. RGS4 is arginylated and degraded by the N-end rule pathway in vitro. J. Biol. Chem. 275, 22931–22941 (2000).
- 56
Byrd, C., Turner, G.C. & Varshavsky, A. The N-end rule pathway controls the import of peptides through degradation of a transcriptional repressor. EMBO J. 17, 269–277 (1998).
- 57
Turner, G., Du, F. & Varshavsky, A. Peptides accelerate their uptake by activating a ubiquitin-dependent proteolytic pathway. Nature 405, 579–582 (2000).
Author information
Affiliations
Rights and permissions
About this article
Cite this article
Hershko, A., Ciechanover, A. & Varshavsky, A. The ubiquitin system. Nat Med 6, 1073–1081 (2000) doi:10.1038/80384
Issue Date
DOI
Further reading
-
RNF4—A Paradigm for SUMOylation‐Mediated Ubiquitination
PROTEOMICS (2019)
-
CSNAP, the smallest CSN subunit, modulates proteostasis through cullin-RING ubiquitin ligases
Cell Death & Differentiation (2019)
-
Plasticity of the Cullin-RING Ligase Repertoire Shapes Sensitivity to Ligand-Induced Protein Degradation
Molecular Cell (2019)
-
Bioinformatics analysis of ubiquitin expression protein gene from Heterodera latipons
Saudi Journal of Biological Sciences (2019)
-
The recognition of development-related genes in the testis and MAGs of time-series Harmonia axyridis adults using a time-series analysis by RNA-seq
Gene (2019)