Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Genetic capsid modifications allow efficient re-targeting of adeno-associated virus type 2

An Erratum to this article was published on 01 December 1999

Abstract

The human parvovirus adeno-associated virus type 2 (AAV2) has many features that make it attractive as a vector for gene therapy1,2. However, the broad host range of AAV2 might represent a limitation for some applications in vivo, because recombinant AAV vector (rAAV)-mediated gene transfer would not be specific for the tissue of interest. This host range is determined by the binding of the AAV2 capsid to specific cellular receptors and/or co-receptors3,4,5,6. The tropism of AAV2 might be changed by genetically introducing a ligand peptide into the viral capsid, thereby redirecting the binding of AAV2 to other cellular receptors. We generated six AAV2 capsid mutants by inserting a 14-amino-acid targeting peptide, L14, into six different putative loops of the AAV2 capsid protein identified by comparison with the known three-dimensional structure of canine parvovirus. All mutants were efficiently packaged. Three mutants expressed L14 on the capsid surface, and one efficiently infected wild-type AAV2-resistant cell lines that expressed the integrin receptor recognized by L14. The results demonstrate that the AAV2 capsid tolerates the insertion of a nonviral ligand sequence. This might open new perspectives for the design of targeted AAV2 vectors for human somatic gene therapy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Delineation of insertion sites for a ligand peptide in the AAV2 capsid protein.
Figure 2: Presentation and functionality of the L14 sequence.
Figure 3: Transduction of B16F10 cells.

Similar content being viewed by others

References

  1. Kotin, R.M. Prospects for the use of adeno-associated virus as a vector for human gene therapy. Hum. Gene Ther. 5, 793– 801 (1994).

    Article  CAS  PubMed  Google Scholar 

  2. Hallek, M. et al. Recombinant adeno-associated virus vectors. IDrugs 1, 561–573 ( 1998).

    CAS  PubMed  Google Scholar 

  3. Mizukami, H., Young, N.S. & Brown, K.E. Adeno-associated virus type 2 binds to a 150-kilodalton cell membrane glycoprotein. Virology 217, 124–130 (1996).

    Article  CAS  PubMed  Google Scholar 

  4. Summerford, C. & Samulski, R.J. Membrane-associated heparan sulfate proteoglycan is a receptor for adeno-associated virus type 2 virions. J. Virol. 72, 1438–1445 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Summerford, C., Bartlett, J.S. & Samulski, R.J. αVβ5 integrin: a co-receptor for adeno-associated virus type 2 infection. Nature Med. 5, 78 –82 (1999).

    Article  CAS  PubMed  Google Scholar 

  6. Qing, K. et al. Human fibroblast growth factor receptor 1 is a co-receptor for infection by adeno-associated virus 2. Nature Med. 5, 71–77 (1999).

    Article  CAS  PubMed  Google Scholar 

  7. Hermonat, P.L., Labow, M.A., Wright, R., Berns, K.I. & Muzyczka, N. Genetics of adeno-associated virus: isolation and preliminary characterization of adeno-associated virus type 2 mutants. J. Virol. 51, 329–339 ( 1984).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Tratschin, J.D., Miller, I.L. & Carter, B.J. Genetic analysis of adeno-associated virus: properties of deletion mutants constructed in vitro and evidence for an adeno-associated virus replication function. J. Virol. 51, 611–619 (1984).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Ruffing, M., Heid, H. & Kleinschmidt, J.A. Mutations in the carboxy terminus of adeno-associated virus 2 capsid proteins affect viral infectivity: lack of an RGD integrin-binding motif. J. Gen. Virol. 75, 3385– 3392 (1994).

    Article  CAS  PubMed  Google Scholar 

  10. Tsao, J. et al. The three-dimensional structure of canine parvovirus and its functional implications. Science 251, 1456 –1464 (1991).

    Article  CAS  PubMed  Google Scholar 

  11. Geourjon, C. & Deléage, G. OPM: a self-optimized method for protein secondary structure prediction. Protein Eng. 7, 157–164 (1994).

    Article  CAS  PubMed  Google Scholar 

  12. Thompson, J.D., Higgins, D.G. & Gibson, T.J. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Research 22, 4673–4680 ( 1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Aumailley, M., Gerl, M., Sonnenberg, A., Deutzmann, R. & Timpl, R. Identification of the Arg-Gly-Asp sequence in laminin A chain as a latent cell-binding site being exposed in fragment P1. FEBS Lett. 262, 82–86 ( 1990).

    Article  CAS  PubMed  Google Scholar 

  14. White, J.M. Integrins as virus receptors. Curr. Biol. 3, 596–599 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Valsesia-Wittmann, S. et al. Modifications in the binding domain of avian retrovirus envelope protein to redirect the host range of retroviral vectors. J. Virol. 68, 4609–4619 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Wistuba, A., Kern, A., Weger, S., Grimm, D. & Kleinschmidt, J.A. Subcellular compartimentalization of adeno-associated virus type 2 assembly. J. Virol. 71, 1341 –1352 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Stewart, P.L. et al. Cryo-EM visualization of an exposed RGD epitope on adenovirus that escapes antibody neutralization. EMBO J. 16, 1189–1198 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Yang, Q. et al. Development of novel cell surface CD34-targeted recombinant adenoassociated virus vectors for gene therapy. Hum. Gene Ther. 9, 1929–1937 ( 1998).

    Article  CAS  PubMed  Google Scholar 

  19. Bartlett, J.S., Kleinschmidt, J.A., Boucher, R.C. & Samulski, R.J. Targeted adeno-associated virus vector transduction of nonpermissive cells mediated by a bispecific F(ab'γ)2 antibody. Nat. Biotech. 17, 181–186 ( 1999).

    Article  CAS  Google Scholar 

  20. Smith, T.F. & Waterman, M.S. Identification of common molecular subsequences. J. Mol. Biol. 147, 195– 197 (1981).

    Article  CAS  PubMed  Google Scholar 

  21. Kabsch, W. & Sander, C. Dictionary of protein secondary structure: pattern recognition of hydrogen-bonded and geometrical features. Biopolymers 22, 2577–2637 (1983).

    Article  CAS  PubMed  Google Scholar 

  22. Samulski, R.J., Chang, L.S. & Shenk, T. A recombinant plasmid from which an infectious adeno-associated virus genome can be excised in vitro and its use to study viral replication. J. Virol. 61, 3096– 3101 (1987).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Chiorini, J.A. et al. High-efficiency transfer of the T cell co-stimulatory molecule B7-2 to lymphoid cells using high-titer recombinant adeno-associated virus vectors. Hum. Gene Ther. 6, 1531– 1541 (1995).

    Article  CAS  PubMed  Google Scholar 

  24. Carrel, S., Sordat, B. & Merenda, C. Establishment of a cell line (Co-115) from a human colon carcinoma transplanted into nude mice. Cancer Res. 36, 3978–3984 (1976).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank I. Renner-Müller and E. Wolf for their help and providing their animal facilities to produce rabbit antiserum against L14. This work was supported by grants from the Wilhelm-Sanderstiftung, Bayerische Forschungsstiftung, and the Deutsche Forschungsgemeinschaft (Sonderforschungsbereich 455) (M.H. and A.G.) and stipends of the Studienstiftung des Deutschen Volkes and the Fond der Chemischen Industrie (BMBF) (M.R.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Hallek.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Girod, A., Ried, M., Wobus, C. et al. Genetic capsid modifications allow efficient re-targeting of adeno-associated virus type 2. Nat Med 5, 1052–1056 (1999). https://doi.org/10.1038/12491

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/12491

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing