Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Identification of an MHC class I-restricted autoantigen in type 1 diabetes by screening an organ-specific cDNA library

Abstract

Type 1 diabetes is an autoimmune disease in which the insulin-producing pancreatic β cells are destroyed at an early age by an immune process that involves both CD4 and CD8 T lymphocytes. The identification of autoantigens in diabetes is very important for the design of antigen-specific immunotherapy. By screening a pancreatic islet cDNA library, we have identified the autoantigen recognized by highly pathogenic CD8 T cells in the non-obese diabetic mouse, one of the best animal models for human diabetes. This is the first identification, to our knowledge, of a CD8 T-cell epitope in an autoimmune disease. The peptide recognized by the cells is in the same region of the insulin B chain as the epitope recognized by previously isolated pathogenic CD4 T cells. This has very important implications for the potential use of insulin in preventative therapy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Phenotypic and functional characteristics of the G9C8 CD8 T-cell clone.
Figure 2: Autoantigen identification using COS-Kd cells transfected with islet cDNA library.
Figure 3: Functional responses of G9C8 CD8 T-cell clone to peptides, and frequency of T cells recognizing G9 tetramer in pancreatic islets of NOD mice.

Similar content being viewed by others

References

  1. Serreze, D.V., Leiter, E.H., Christianson, G.J., Greiner, D. & Roopenian, D.C. Major histocompatibility complex class I-deficient NOD-B2mnull mice are diabetes and insulitis resistant. Diabetes 43, 505–509 ( 1994).

    Article  CAS  Google Scholar 

  2. Wicker, L.S. et al. Beta 2-microglobulin-deficient NOD mice do not develop insulitis or diabetes. Diabetes 43, 500– 504 (1994).

    Article  CAS  Google Scholar 

  3. Wang, B., Gonzalez, A., Benoist, C. & Mathis, D. The role of CD8+ T cells in the initiation of insulin-dependent diabetes mellitus. Eur. J. Immunol. 26, 1762– 1769 (1996).

    Article  CAS  Google Scholar 

  4. Serreze, D.V. et al. Initiation of autoimmune diabetes in NOD/Lt mice is MHC class I-dependent. J. Immunol. 158, 3978– 3986 (1997).

    CAS  Google Scholar 

  5. Kay, T.W., Parker, J.L., Stephens, L.A., Thomas, H.E. & Allison, J. RIP-beta 2-microglobulin transgene expression restores insulitis, but not diabetes, in beta 2-microglobulin null nonobese diabetic mice. J. Immunol. 157, 3688–3693 (1996).

    Google Scholar 

  6. Wong, F.S., Visintin, I., Wen, L., Flavell, R.A. & Janeway, C.J. CD8 T cell clones from young nonobese diabetic (NOD) islets can transfer rapid onset of diabetes in NOD mice in the absence of CD4 cells. J. Exp. Med. 183, 67– 76 (1996).

    Article  CAS  Google Scholar 

  7. Nagata, M., Santamaria, P., Kawamura, T., Utsugi, T. & Yoon, J.W. Evidence for the role of CD8+ cytotoxic T cells in the destruction of pancreatic beta-cells in nonobese diabetic mice. J. Immunol. 152, 2042– 2050 (1994).

    CAS  Google Scholar 

  8. Shimizu, J., Kanagawa, O. & Unanue, E.R. Presentation of beta-cell antigens to CD4+ and CD8+ T cells of non- obese diabetic mice. J. Immunol. 151 , 1723–1730 (1993).

    CAS  Google Scholar 

  9. Palmer, J.P. et al. Insulin antibodies in insulin-dependent diabetics before insulin treatment. Science 222, 1337– 1339 (1983).

    Article  CAS  Google Scholar 

  10. Baekkeskov, S. et al. Identification of the 64K autoantigen in insulin-dependent diabetes as the GABA-synthesizing enzyme glutamic acid decarboxylase. Nature 347, 151–156 ( 1990); erratum: 347, 782 (1990).

    Article  CAS  Google Scholar 

  11. Solimena, M. et al. ICA 512, an autoantigen of type I diabetes, is an intrinsic membrane protein of neurosecretory granules. Embo. J. 15, 2102–2114 (1996).

    Article  CAS  Google Scholar 

  12. Bergman, B. & Haskins, K. Islet-specific T-cell clones from the NOD mouse respond to beta-granule antigen. Diabetes 43, 197–203 (1994).

    Article  CAS  Google Scholar 

  13. Daniel, D. & Wegmann, D.R. Protection of nonobese diabetic mice from diabetes by intranasal or subcutaneous administration of insulin peptide B-(9-23). Proc. Natl. Acad. Sci. USA 93, 956–960 (1996).

    Article  CAS  Google Scholar 

  14. Zekzer, D. et al. GAD-reactive CD4+ Th1 cells induce diabetes in NOD/SCID mice. J. Clin. Invest. 101, 68– 73 (1998).

    Article  CAS  Google Scholar 

  15. Elias, D., Markovits, D., Reshef, T., van der Zee, R. & Cohen, I.R. Induction and therapy of autoimmune diabetes in the non-obese diabetic (NOD/Lt) mouse by a 65-kDa heat shock protein. Proc. Natl. Acad. Sci. USA 87, 1576– 1580 (1990).

    Article  CAS  Google Scholar 

  16. Karttunen, J., Sanderson, S. & Shastri, N. Detection of rare antigen-presenting cells by the lacZ T-cell activation assay suggests an expression cloning strategy for T-cell antigens. Proc. Natl. Acad. Sci. USA 89, 6020–6024 (1992).

    Article  CAS  Google Scholar 

  17. Sanderson, S. & Shastri, N. LacZ inducible, antigen/MHC-specific T cell hybrids. Int. Immunol. 6, 369– 376 (1994).

    Article  CAS  Google Scholar 

  18. Malarkannan, S., Gonzalez, F., Nguyen, V., Adair, G. & Shastri, N. Alloreactive CD8+ T cells can recognize unusual, rare, and unique processed peptide/MHC complexes. J. Immunol. 157, 4464–4473 (1996).

    CAS  Google Scholar 

  19. Sanderson, S., Campbell, D.J. & Shastri, N. Identification of a CD4+ T cell-stimulating antigen of pathogenic bacteria by expression cloning. J. Exp. Med. 182, 1751–1757 (1995).

    Article  CAS  Google Scholar 

  20. Malarkannan, S., Serwold, T., Nguyen, V., Sherman, L.A. & Shastri, N. The mouse mammary tumor virus env gene is the source of a CD8+ T-cell- stimulating peptide presented by a major histocompatibility complex class I molecule in a murine thymoma. Proc. Natl. Acad. Sci. USA 93, 13991–13996 (1996).

    Article  CAS  Google Scholar 

  21. Wentworth, B.M., Schaefer, I.M., Villa-Komaroff, L. & Chirgwin, J.M. Characterization of the two nonallelic genes encoding mouse preproinsulin. J. Mol. Evol. 23, 305– 312 (1986).

    Article  CAS  Google Scholar 

  22. Busch, D.H., Pilip, I.M., Vijh, S. & Pamer, E.G. Coordinate regulation of complex T cell populations responding to bacterial infection. Immunity 8, 353–362 ( 1998).

    Article  CAS  Google Scholar 

  23. Bergerot, I., Fabien, N., Maguer, V. & Thivolet, C. Oral administration of human insulin to NOD mice generates CD4+ T cells that suppress adoptive transfer of diabetes. J. Autoimmun. 7, 655 –663 (1994).

    Article  CAS  Google Scholar 

  24. Harrison, L.C., Dempsey-Collier, M., Kramer, D.R. & Takahashi, K. Aerosol insulin induces regulatory CD8 gamma delta T cells that prevent murine insulin-dependent diabetes. J. Exp. Med. 184, 2167–2174 (1996).

    Article  CAS  Google Scholar 

  25. Hutchings, P. & Cooke, A. Protection from insulin dependent diabetes mellitus afforded by insulin antigens in incomplete Freund's adjuvant depends on route of administration. J. Autoimmun. 11 , 127–130 (1998).

    Article  CAS  Google Scholar 

  26. French, M.B. et al. Transgenic expression of mouse proinsulin II prevents diabetes in nonobese diabetic mice. Diabetes 46, 34 –39 (1997); erratum: 46, 924 (1997).

    Article  CAS  Google Scholar 

  27. Zekzer, D. et al. Inhibition of diabetes by an insulin-reactive CD4 T-cell clone in the nonobese diabetic mouse. Diabetes 46, 1124–1132 (1997).

    Article  CAS  Google Scholar 

  28. Smith, K.M., Olson, D.C., Hirose, R. & Hanahan, D. Pancreatic gene expression in rare cells of thymic medulla: evidence for functional contribution to T cell tolerance. Int. Immunol. 9, 1355 –1365 (1997).

    Article  CAS  Google Scholar 

  29. Pugliese, A. et al. The insulin gene is transcribed in the human thymus and transcription levels correlated with allelic variation at the INS VNTR-IDDM2 susceptibility locus for type 1 diabetes. Nature Genet. 15, 293–297 (1997).

    Article  CAS  Google Scholar 

  30. Bennett, S.T. et al. Insulin VNTR allele-specific effect in type 1 diabetes depends on identity of untransmitted paternal allele. The IMDIAB Group. Nature Genet. 17, 350–352 (1997).

    Article  CAS  Google Scholar 

  31. Santamaria, P. et al. Beta-cell-cytotoxic CD8+ T cells from nonobese diabetic mice use highly homologous T cell receptor alpha-chain CDR3 sequences. J. Immunol. 154, 2494–2503 (1995).

    CAS  Google Scholar 

  32. DiLorenzo, T.P. et al. Major histocompatibility complex class I-restricted T cells are required for all but the end stages of diabetes development in nonobese diabetic mice and use a prevalent T cell receptor alpha chain gene rearrangement. Proc. Natl. Acad. Sci. USA 95, 12538– 12543 (1998).

    Article  CAS  Google Scholar 

  33. Keller, R.J., Eisenbarth, G.S. & Jackson, R.A. Insulin prophylaxis in individuals at high risk of type I diabetes. Lancet 341, 927– 928 (1993).

    Article  CAS  Google Scholar 

  34. The Diabetes Prevention Trial-Type 1 diabetes (DPT-1): implementation of screening and staging of relatives. DPT-1 Study Group. Transplant Proc. 27, 3377 ( 1995).

  35. Carel, J.C. & Bougneres, P.F. Treatment of prediabetic patients with insulin: experience and future. European Prediabetes Study Group. Horm. Res. 45, 44–47 ( 1996).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank M. Altieri for islet isolation for preparation of the cDNA library and J. Rife and M. Tang for technical assistance. We also thank C. Viret, R. Medzhitov, P. Cresswell and R. Sherwin for discussions. DNA sequencing and peptide synthesis was done by the W.M. Keck Biotechnology facility of Yale University School of Medicine. This work was supported by Project 1 and the NOD and mutant mouse core B and islet isolation core C of NIH/JDFI diabetes program project grant DK-53015. F.S.W. and L.W. are recipients of JDFI Career Development Awards. J.K. was a recipient of a Howard Hughes post-doctoral fellowship and C.D. was supported by a Student Research Fellowship from the American Heart Association. C.A.J.,Jr. is an investigator of the Howard Hughes Medical Institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Susan Wong.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wong, F., Karttunen, J., Dumont, C. et al. Identification of an MHC class I-restricted autoantigen in type 1 diabetes by screening an organ-specific cDNA library. Nat Med 5, 1026–1031 (1999). https://doi.org/10.1038/12465

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/12465

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing