Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A humanized system for pharmacologic control of gene expression

Abstract

Gene therapy was originally conceived as a medical intervention to replace or correct defective genes in patients with inherited disorders. However, it may have much broader potential as an alternative delivery platform for protein therapeutics, such as cytokines, hormones, antibodies and novel engineered proteins. One key technical barrier to the widespread implementation of this form of therapy is the need for precise control over the level of protein production. A suitable system for pharmacologic control of therapeutic gene expression would permit precise titration of gene product dosage, intermittent or pulsatile treatment, and ready termination of therapy by withdrawal of the activating drug. We set out to design such a system with the following properties: (1) low baseline expression and high induction ratio; (2) positive control by an orally bioavailable small–molecule drug; (3) reduced potential for immune recognition through the exclusive use of human proteins; and (4) modularity to allow the independent optimization of each component using the tools of protein engineering. We report here the properties of this system and demonstrate its use to control circulating levels of human growth hormone in mice implanted with engineered human cells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Gossen, M., Bonin, A. & Bujard, H. Control of gene activity in higher eukaryotic cells by prokaryotic regulatory elements. Trends Biol. Sci. 18, 471–475 (1993).

    Article  CAS  Google Scholar 

  2. Spencer, D.M. Creating conditional mutants in mammals. Trends Genet. 12, 181–187 (1996).

    Article  CAS  Google Scholar 

  3. Ptashne, M. How eukaryotic transcriptional activators work. Nature 335, 683–689 (1988).

    Article  CAS  Google Scholar 

  4. Brent, R. & Ptashne, M. A eukaryotic transcriptional activator bearing the DNA specificity of a prokaryotic repressor. Cell 43, 729–736 (1985).

    Article  CAS  Google Scholar 

  5. Hope, I.A. & Struhl, K. Functional dissection of a eukaryotic transcriptional activator protein, GCN4 of yeast. Cell 46, 885–894 (1986).

    Article  CAS  Google Scholar 

  6. Fields, S. & Song, O.-K. A novel genetic system to detect protein-protein interactions. Nature 340, 245–246 (1989).

    Article  CAS  Google Scholar 

  7. Spencer, D.M., Wandless, T.J., Schreiber, S.L. & Crabtree, G.R. Controlling signal transduction with synthetic ligands. Science 262, 1019–1024 (1993).

    Article  CAS  Google Scholar 

  8. Austin, D.J., Crabtree, G.R. & Schreiber, S.L. Proximity versus allostery: The role of regulated protein dimerization in biology. Chem. Biol. 1, 131–136 (1994).

    Article  CAS  Google Scholar 

  9. Pruschy, M.N. et a Mechanistic studies of a signaling pathway activated by the organic dimerizer FK1012. Chem. Biol. 1, 163–172 (1994).

    Article  CAS  Google Scholar 

  10. Spencer, D.M., Graef, I., Austin, D.J., Schreiber, S.L. & Crabtree, G.R. A general strategy for producing conditional alleles of Src-like tyrosine kinases. Proc. Natl. Acad. Sci. USA 92, 9805–9809 (1995).

    Article  CAS  Google Scholar 

  11. Holsinger, L.J., Spencer, D.M., Austin, D.J., Schreiber, S.L. & Crabtree, G.R. Signal transduction in T lymphocytes using a conditional allele of Sos. Proc. Natl Acad. Sci. USA 92, 9810–9814 (1995).

    Article  CAS  Google Scholar 

  12. Belshaw, P.J., Ho, S.N., Crabtree, G.R. & Schreiber, S.L. Controlling protein association and subcellular localization with a synthetic ligand that induces het-erodimerization of proteins. Proc. Natl. Acad. Sci. USA 93, 4604–4607 (1996).

    Article  CAS  Google Scholar 

  13. Ho, S.N., Biggar, S.R., Spencer, D.M., Schreiber, S.L. & Crabtree, G.R. Controlling transcription with synthetic ligands. Nature (in the press).

  14. Bierer, B.E. et al. Two distinct signal transmission pathways in T lymphocytes are inhibited by complexes formed between an immunophilin and either FK506 or rapamycin. Proc. Natl. Acad. Sci. USA 87, 9231–9235 (1990).

    Article  CAS  Google Scholar 

  15. Brown, E.J. et al. A mammalian protein targeted by G1-arresting rapamycin-receptor complex. Nature 369, 756–758 (1994).

    Article  CAS  Google Scholar 

  16. Chiu, M.L., Katz, H. & Berlin, V. RAPT1, a mammalian homolog of yeast Tor, interacts with the FKBP12/rapamycin complex. Proc. Natl. Acad. Sci. USA 91, 12574–12578 (1994).

    Article  CAS  Google Scholar 

  17. Sabatini, D.M., Erdjument-Bromage, H., Lui, M., Tempst, P. & Snyder, S.H. RAFT1: A mammalian protein that binds to FKBP12 in a rapamycin-dependent fashion and is homologous to yeast TORs. Cell 78, 35–43 (1994).

    Article  CAS  Google Scholar 

  18. Sabers, C.J. et al. Isolation of a protein target of the FKBP12-rapamycin complex in mammalian cells. J. Biol. Chem. 270, 815–822 (1995).

    Article  CAS  Google Scholar 

  19. Stan, R. et al. Interaction between FKBP12-rapamycin and TOR involves a conserved serine residue. J. Biol. Chem. 269, 32037–32030 (1994).

    Google Scholar 

  20. Kahan, B., Chang, J. & Sehgal, S. Preclinical evaluation of a new potent im-munosuppressive agent, rapamycin. Transplantation 52, 185–191 (1991).

    Article  CAS  Google Scholar 

  21. Kay, J., Kromwel, L., Doe, S. & Denyer, M. Inhibition of T and B lymphocyte proliferation by rapamycin. Immunology 72, 544–549 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Stepkowski, S., Chen, H., Daloze, P. & Kahan, B., mycin, apotent immuno-suppressive drug for vascularized heart, kidney, and small bowel transplantation ir- the rat. Transplantation 51, 22–26 (1991).

    Article  CAS  Google Scholar 

  23. Pomerantz, J.L., Sharp, P.A. & CO.Structure-based design of transcription factors. Science 267, 93–96 (1995).

    Article  CAS  Google Scholar 

  24. Schmitz, M.L. & Baeurle, P.A. The p65 subunit is responsible for the strong transcription activating potential of NF-KB. EMBO J. 10, 3805–3817 (1991).

    Article  CAS  Google Scholar 

  25. Chen, J., Zheng, X.F., Brown, E.J. & Schreiber, S.L. Identification of an 11-kDa FKBP12-rapamycin-binding domain within the 289-kDa FKBP12-rapamycin-associated protein and characterization of a critical serine residue. Proc. Natl. Acad. Sci. USA 92, 4947–4951 (1995).

    Article  CAS  Google Scholar 

  26. Heartlein, M.W. et al. Long-term production and delivery of human growth hormone. Proc. Natl. Acad. Sci. USA 91, 10967–10971 (1994).

    Article  CAS  Google Scholar 

  27. Riddell, S.R. et al. T-cell mediated rejection of gene-modified HIV-specific cyto-toxic T lymphocytes in HIV-infected patients. Nature Med. 2, 216–223 (1996).

    Article  CAS  Google Scholar 

  28. Stern, L.J. & Wiley, D.C. Antigenic peptide binding by class I and class II histo-compatibility proteins. Structure 2, 245–251 (1994).

    Article  CAS  Google Scholar 

  29. Luengo, J.I. et al. Structure-activity studies of rapamycin analogs: Evidence that the C-7 methoxy is part of the effector domain and positioned at the FKBP12/FRAP interface. Chem. Biol 2, 471–481 (1995).

    Article  CAS  Google Scholar 

  30. Belshaw, P.J., Schoepfer, J., Liu, K., Morrison, K. & Schreiber, S.L. Rational design of orthogonal receptor-ligand combinations. Angew. Chem. Int. Ed. Eng. 34, 2129–2132 (1995).

    Article  CAS  Google Scholar 

  31. Choi, J., Chen, J., Schreiber, S.L. & Clardy, J. Structure of the FKBP12-rapamycin complex interacting with the binding domain of human FRAP. Science 273, 239–242 (1996).

    Article  CAS  Google Scholar 

  32. Attar, R.M. & Gilman, M.Z. Expression cloning of a novel zinc-finger protein that binds to the c-fos serum response element. Mol. Cell. Biol. 12, 2432–2443 (1992).

    Article  CAS  Google Scholar 

  33. Standaert, R.F., Galat, A., Verdine, G.L. & Schreiber, S.L. Molecular cloning and overexpression of the human FK506-binding protein FKBP. Nature 346, 671–674 (1990).

    Article  CAS  Google Scholar 

  34. Boshart, M. et al A very strong enhancer is located upstream of an immediate early gene of human cytomegalovirus. Cell 41, 521–530 (1985).

    Article  CAS  Google Scholar 

  35. Siebenlist, U. et al Promoter region of interleukin-2 gene undergoes chro-matin structure changes and confers inducibility on chloramphenicol acetyl-transferase gene during activation of T cells. Mol. Cell Biol 6, 3042–3049 (1986).

    Article  CAS  Google Scholar 

  36. Selden, R.F., Burke-Howie, K., Rowe, M.E., Goodman, H.M. & Moore, D.D. Human growth hormone as a reporter gene in regulation studies employing transient gene expression. Mol Cell Biol. 6, 3173–3179 (1986).

    Article  CAS  Google Scholar 

  37. Morgenstern, J.P. & Land, H. Advanced mammalian gene transfer: High titre retroviral vectors with multiple drug selection markers and a complementary helper-free packaging cell line. Nucleic Acids Res. 18, 3587–3596 (1990).

    Article  CAS  Google Scholar 

  38. Muller, A.J. et al. BCR first exon sequences specifically activate BCR/ABL tyrosine kinase oncogene of Philadelphia chromosome-positive human leukemias. Mol Cell Biol 11, 1785–1792 (1991).

    Article  CAS  Google Scholar 

  39. Pear, W.S., Nolan, G.P., Scott, M.L. & Baltimore, D. Production of high-titer helper-free retroviruses by transient transfection. Proc. Natl. Acad. Sci. USA 90, 8392–8396 (1993).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rivera, V., Clackson, T., Natesan, S. et al. A humanized system for pharmacologic control of gene expression. Nat Med 2, 1028–1032 (1996). https://doi.org/10.1038/nm0996-1028

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm0996-1028

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing