Pharmacological agents directed against the integrins αvβ3 and αvβ5 have been reported to inhibit angiogenesis. However, genetic ablations of the genes encoding these integrins fail to block angiogenesis and in some cases even enhance it. This apparent paradox suggests the hypotheses that these integrins are negative regulators of angiogenesis and that the drugs targeting them may be acting as agonists rather than antagonists.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 12 print issues and online access
$209.00 per year
only $17.42 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
References
Hynes, R.O. Integrins: versatility, modulation, and signaling in cell adhesion. Cell 69, 11–25 (1992).
Giancotti, F.G. & Ruoslahti, E. Integrin signaling. Science 285, 1028–1032 (1999).
van der Flier, A. & Sonnenberg, A. Function and interactions of integrins. Cell Tissue Res. 305, 285–298 (2001).
Hynes, R.O., Bader, B.L. & Hodivala-Dilke, K. Integrins in vascular development. Braz. J. Med. Biol. Res. 32, 501–510 (1999).
Eliceiri, B.P. & Cheresh, D.A. The role of α-v integrins during angiogenesis: insights into potential mechanisms of action and clinical development. J. Clin. Invest. 103, 1227–1230 (1999).
Eliceiri, B.P. & Cheresh, D.A. Adhesion events in angiogenesis. Curr. Opin. Cell Biol. 13, 563–568 (2001).
Brooks, P.C., Clark, R.A. & Cheresh, D.A. Requirement of vascular integrin αv β3 for angiogenesis. Science 264, 569–571 (1994).
Brooks, P.C. et al. Integrin αv β3 antagonists promote tumor regression by inducing apoptosis of angiogenic blood vessels. Cell 79, 1157–1164 (1994).
Brooks, P.C. et al. Antiintegrin αv β3 blocks human breast cancer growth and angiogenesis in human skin. J. Clin. Invest. 96, 1815–1822 (1995).
Friedlander, M. et al. Definition of two angiogenic pathways by distinct αv integrins. Science 270, 1500–1502 (1995).
Friedlander, M. et al. Involvement of integrins αv β3 and αv β5 in ocular neovascular diseases. Proc. Natl. Acad. Sci. USA 93, 9764–9769 (1996).
Hammes, H.P., Brownlee, M., Jonczyk, A., Sutter, A. & Preissner, K.T. Subcutaneous injection of a cyclic peptide antagonist of vitronectin receptor-type integrins inhibits retinal neovascularization. Nature Med. 2, 529–533 (1996).
Gutheil, J.C. et al. Targeted antiangiogenic therapy for cancer using Vitaxin: a humanized monoclonal antibody to the integrin αvβ3. Clin. Cancer Res. 6, 3056–3061 (2000).
Fassler, R. & Meyer, M. Consequences of lack of β1 integrin gene expression in mice. Genes Dev. 9, 1896–1908 (1995).
Stephens, L.E. et al. Deletion of β1 integrins in mice results in inner cell mass failure and peri-implantation lethality. Genes Dev. 9, 1883–1895 (1995).
Bloch, W. et al. β1 integrin is essential for teratoma growth and angiogenesis. J. Cell Biol. 139, 265–278 (1997).
Hodivala-Dilke, K.M. et al. β3-integrin-deficient mice are a model for Glanzmann thrombasthenia showing placental defects and reduced survival. J. Clin. Invest. 103, 229–238 (1999).
Huang, X., Griffiths, M., Wu, J., Farese, R.V. Jr., & Sheppard, D. Normal development, wound healing, and adenovirus susceptibility in β5-deficient mice. Mol. Cell Biol. 20, 755–759 (2000).
Huang, X.Z. et al. Inactivation of the integrin β6 subunit gene reveals a role of epithelial integrins in regulating inflammation in the lung and skin. J. Cell Biol. 133, 921–928 (1996).
Reynolds, L.E. et al. Enhanced pathological angiogenesis in mice lacking β3 integrin or β3 and β5 integrins. Nature Med. 8, 27–34 (2002).
Bader, B.L., Rayburn, H., Crowley, D. & Hynes, R.O. Extensive vasculogenesis, angiogenesis, and organogenesis precede lethality in mice lacking all αv integrins. Cell 95, 507–519 (1998).
McCarty, J.H. et al. Defective associations between blood vessels and developing neuronal parenchyma lead to cerebral hemorrhage in mice lacking α-v integrins. Mol. Cell Biol., in press (2002).
Zhu, J. et al. β8 integrins are required for vascular morphogenesis in mouse embryos. Development 129, 2891–2903 (2002).
McHugh, K.P. et al. Mice lacking β3 integrins are osteosclerotic because of dysfunctional osteoclasts. J. Clin. Invest. 105, 433–440 (2000).
Horton, M.A. Integrin antagonists as inhibitors of bone resorption: implications for treatment. Proc. Nutr. Soc. 60, 275–281 (2001).
George, E.L., Georges-Labouesse, E.N., Patel-King, R.S., Rayburn, H. & Hynes, R.O. Defects in mesoderm, neural tube and vascular development in mouse embryos lacking fibronectin. Development 119, 1079–1091 (1993).
Yang, J.T., Rayburn, H. & Hynes, R.O. Embryonic mesodermal defects in α5 integrin-deficient mice. Development 119, 1093–1105 (1993).
Kim, S., Bell, K., Mousa, S.A. & Varner, J.A. Regulation of angiogenesis in vivo by ligation of integrin α5β1 with the central cell-binding domain of fibronectin. Am. J. Pathol. 156, 1345–1362 (2000).
Senger, D.R. et al. Angiogenesis promoted by vascular endothelial growth factor: regulation through α1β1 and α2β1 integrins. Proc. Natl. Acad. Sci. USA 94, 13612–13617 (1997).
Pozzi, A. et al. Elevated matrix metalloprotease and angiostatin levels in integrin α1 knockout mice cause reduced tumor vascularization. Proc. Natl. Acad. Sci. USA 97, 2202–2207 (2000).
Miranti, C.K. & Brugge, J.S. Sensing the environment: a historical perspective on integrin signal transduction. Nature Cell Biol. 4, E83–E90 (2002).
Du, X. et al. Long-range propagation of conformational changes in integrin αIIb β3. J. Biol. Chem. 268, 23087–23092 (1993).
Diaz-Gonzalez, F., Forsyth, J., Steiner, B. & Ginsberg, M.H. Trans-dominant inhibition of integrin function. Mol. Biol. Cell 7, 1939–1951 (1996).
Legler, D.F., Wiedle, G., Ross, F.P. & Imhof, B.A. Superactivation of integrin αvβ3 by low antagonist concentrations. J. Cell Sci. 114, 1545–1553 (2001).
Peter, K., Schwarz, M., Nordt, T. & Bode, C. Intrinsic activating properties of GP IIb/IIIa blockers. Thromb. Res. 103 (Suppl. 1), S21–S27 (2001).
Lawler, J. The functions of thrombospondin-1 and -2. Curr. Opin. Cell Biol. 12, 634–640 (2000).
Adams, J.C. Thrombospondins: multifunctional regulators of cell interactions. Annu. Rev. Cell Dev. Biol. 17, 25–51 (2001).
Rodriguez-Manzaneque, J.C. et al. Thrombospondin-1 suppresses spontaneous tumor growth and inhibits activation of matrix metalloproteinase-9 and mobilization of vascular endothelial growth factor. Proc. Natl. Acad. Sci. USA 98, 12485–12490 (2001).
Jimenez, B. et al. Signals leading to apoptosis-dependent inhibition of neovascularization by thrombospondin-1. Nat Med 6, 41–48 (2000).
Bergers, G. et al. Matrix metalloproteinase-9 triggers the angiogenic switch during carcinogenesis. Nature Cell Biol. 2, 737–744 (2000).
Petitclerc, E. et al. New functions for non-collagenous domains of human collagen type IV. Novel integrin ligands inhibiting angiogenesis and tumor growth in vivo. J. Biol. Chem. 275, 8051–8061 (2000).
Maeshima, Y., Colorado, P.C. & Kalluri, R. Two RGD-independent αvβ3 integrin binding sites on tumstatin regulate distinct anti-tumor properties. J. Biol. Chem. 275, 23745–23750 (2000).
Tarui, T., Miles, L.A. & Takada, Y. Specific interaction of angiostatin with integrin α(v)β(3) in endothelial cells. J. Biol. Chem. 276, 39562–39568 (2001).
Rehn, M. et al. Interaction of endostatin with integrins implicated in angiogenesis. Proc. Natl. Acad. Sci. USA 98, 1024–1029 (2001).
Maeshima, Y. et al. Tumstatin, an endothelial cell-specific inhibitor of protein synthesis. Science 295, 140–143 (2002).
Brooks, P.C. et al. Localization of matrix metalloproteinase MMP-2 to the surface of invasive cells by interaction with integrin αv β3. Cell 85, 683–693 (1996).
Brooks, P.C., Silletti, S., von Schalscha, T.L., Friedlander, M. & Cheresh, D.A. Disruption of angiogenesis by PEX, a noncatalytic metalloproteinase fragment with integrin binding activity. Cell 92, 391–400 (1998).
Blystone, S.D., Slater, S.E., Williams, M.P., Crow, M.T. & Brown, E.J. A molecular mechanism of integrin crosstalk: αvβ3 suppression of calcium/calmodulin-dependent protein kinase II regulates α5β1 function. J. Cell Biol. 145, 889–897 (1999).
Simon, K.O., Nutt, E.M., Abraham, D.G., Rodan, G.A. & Duong, L.T. The αvβ3 integrin regulates α5β1-mediated cell migration toward fibronectin. J. Biol. Chem. 272, 29380–29389 (1997).
Bilato, C. et al. The inhibition of vascular smooth muscle cell migration by peptide and antibody antagonists of the αvβ3 integrin complex is reversed by activated calcium/calmodulin- dependent protein kinase II. J. Clin. Invest. 100, 693–704 (1997).
Kim, S., Harris, M. & Varner, J.A. Regulation of integrin αvβ3-mediated endothelial cell migration and angiogenesis by integrin α5β1 and protein kinase A. J. Biol. Chem. 275, 33920–33928 (2000).
Schwartz, M.A. & Ginsberg, M.H. Networks and crosstalk: integrin signalling spreads. Nature Cell Biol. 4, E65–E68 (2002).
Meredith, J.E., Jr., Fazeli, B. & Schwartz, M.A. The extracellular matrix as a cell survival factor. Mol. Biol. Cell 4, 953–961 (1993).
Frisch, S.M. & Screaton, R.A. Anoikis mechanisms. Curr. Opin. Cell Biol. 13, 555–562 (2001).
Buckley, C.D. et al. RGD peptides induce apoptosis by direct caspase-3 activation. Nature 397, 534–539 (1999).
Adderley, S.R. & Fitzgerald, D.J. Glycoprotein IIb/IIIa antagonists induce apoptosis in rat cardiomyocytes by caspase-3 activation. J. Biol. Chem. 275, 5760–5766 (2000).
Stupack, D.G., Puente, X.S., Boutsaboualoy, S., Storgard, C.M. & Cheresh, D.A. Apoptosis of adherent cells by recruitment of caspase-8 to unligated integrins. J. Cell Biol. 155, 459–470 (2001).
Cheresh, D.A. & Stupack, D.G. Integrin-mediated death: an explanation of the integrin-knockout phenotype? Nat. Med. 8, 193–194 (2002).
Acknowledgements
I thank J. Lively, J. McCarty, D. Taverna and K. Hodivala-Dilke for valuable discussions and G. Hendrey for manuscript preparation. Work in the author's laboratory was supported by the Howard Hughes Medical Institute (HHMI) and by grants from the National Institutes of Health (RO1CA17007 and PO1 HL66105). R.O. Hynes is a HHMI investigator.
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Hynes, R. A reevaluation of integrins as regulators of angiogenesis. Nat Med 8, 918–921 (2002). https://doi.org/10.1038/nm0902-918
Issue Date:
DOI: https://doi.org/10.1038/nm0902-918