Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Abrupt rate accelerations or premature beats cause life-threatening arrhythmias in mice with long-QT3 syndrome

Abstract

Deletion of amino-acid residues 1505–1507 (KPQ) in the cardiac SCN5A Na+ channel causes autosomal dominant prolongation of the electrocardiographic QT interval (long-QT syndrome type 3 or LQT3). Excessive prolongation of the action potential at low heart rates predisposes individuals with LQT3 to fatal arrhythmias, typically at rest or during sleep. Here we report that mice heterozygous for a knock-in KPQ-deletion (SCN5AΔ/+) show the essential LQT3 features and spontaneously develop life-threatening polymorphous ventricular arrhythmias. Unexpectedly, sudden accelerations in heart rate or premature beats caused lengthening of the action potential with early afterdepolarization and triggered arrhythmias in Scn5aΔ/+ mice. Adrenergic agonists normalized the response to rate acceleration in vitro and suppressed arrhythmias upon premature stimulation in vivo. These results show the possible risk of sudden heart-rate accelerations. The Scn5aΔ/+ mouse with its predisposition for pacing-induced arrhythmia might be useful for the development of new treatments for the LQT3 syndrome.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Prolonged repolarization in Scn5aΔ/+ mice.
Figure 2: Prolonged repolarization and action potentials in Scn5aΔ/+ mice.
Figure 3: Electrophysiological characteristics of the Na+ current in Scn5aΔ/+ mice.
Figure 4: Spontaneous arrhythmias in Scn5aΔ/+ mice.
Figure 5: Pacing-induced ventricular arrhythmias in Scn5aΔ/+ mice.
Figure 6: Anti-arrhythmic effect of isoproterenol (ISO) in Scn5aΔ/+ mice.

Similar content being viewed by others

References

  1. Jiang, C. et al. Two long QT syndrome loci map to chromosomes 3 and 7 with evidence for further heterogeneity. Nature Genet. 8, 141–147 (1994).

    Article  Google Scholar 

  2. Wang, Q. et al. SCN5A mutations associated with an inherited cardiac arrhythmia, long QT syndrome. Cell 80, 805–811 (1995).

    Article  Google Scholar 

  3. Kannel, W.B., Cupples, L.A. & D'Agostino, R.B. Sudden death risk in overt coronary heart disease: the Framingham Study. Am. Heart J. 113, 799–804 (1987).

    Article  Google Scholar 

  4. Willich, S.N. et al. Circadian variation in the incidence of sudden cardiac death in the Framingham Heart Study population. Am. J. Cardiol. 60, 801–806 (1987).

    Article  Google Scholar 

  5. Schwartz, P.J. et al. Prolongation of the QT interval and the sudden infant death syndrome. N. Engl. J. Med. 338, 1709–1714 (1998).

    Article  Google Scholar 

  6. Schwartz, P.J. et al. A molecular link between the sudden infant death syndrome and the long- QT syndrome. N. Engl. J. Med. 343, 262–267 (2000).

    Article  Google Scholar 

  7. Sesti, F. et al. A common polymorphism associated with antibiotic-induced cardiac arrhythmia. Proc. Natl. Acad. Sci. USA 97, 10613–8 (2000).

    Article  Google Scholar 

  8. Napolitano, C. et al. Evidence for a cardiac ion channel mutation underlying drug-induced QT prolongation and life-threatening arrhythmias. J. Cardiovasc. Electrophysiol. 11, 691–696 (2000).

    Article  Google Scholar 

  9. Viskin, S. Long QT syndromes and torsade de pointes. Lancet 354, 1625–1633 (1999).

    Article  Google Scholar 

  10. West, J.W. et al. A cluster of hydrophobic amino acid residues required for fast Na(+)-channel inactivation. Proc. Natl. Acad. Sci. USA 89, 10910–10914 (1992).

    Article  Google Scholar 

  11. Zareba, W. et al. Influence of genotype on the clinical course of the long-QT syndrome. International Long-QT Syndrome Registry Research Group. N. Engl. J. Med. 339, 960–965 (1998).

    Article  Google Scholar 

  12. Schwartz, P.J. et al. Long QT syndrome patients with mutations of the SCN5A and HERG genes have differential responses to Na+ channel blockade and to increases in heart rate. Implications for gene-specific therapy. Circulation 92, 3381–3386 (1995).

    Article  Google Scholar 

  13. Schwartz, P.J. et al. Genotype-phenotype correlation in the long-QT syndrome: Gene-specific triggers for life-threatening arrhythmias. Circulation 103, 89–95 (2001).

    Article  Google Scholar 

  14. Dumaine, R. et al. Multiple mechanisms of Na+ channel-linked long-QT syndrome. Circ. Res. 78, 916–924 (1996).

    Article  Google Scholar 

  15. Nagatomo, T. et al. Temperature dependence of early and late currents in human cardiac wild-type and long Q-T ΔKPQ Na+ channels. Am. J. Physiol. 275, H2016–2024 (1998).

    PubMed  Google Scholar 

  16. Chandra, R., Starmer, C.F. & Grant, A.O. Multiple effects of KPQ deletion mutation on gating of human cardiac Na+ channels expressed in mammalian cells. Am. J. Physiol. 274, H1643–1654 (1998).

    PubMed  Google Scholar 

  17. An, R.H., Bangalore, R., Rosero, S.Z. & Kass, R.S. Lidocaine block of LQT–3 mutant human Na+ channels. Circ. Res. 79, 103–108 (1996).

    Article  Google Scholar 

  18. Bennett, P.B., Yazawa, K., Makita, N. & George, A.L. Jr. Molecular mechanism for an inherited cardiac arrhythmia. Nature 376, 683–685 (1995).

    Article  Google Scholar 

  19. Wang, D.W., Yazawa, K., George, A.L., Jr & Bennett, P.B. Characterization of human cardiac Na+ channel mutations in the congenital long QT syndrome. Proc. Natl. Acad. Sci. USA 93, 13200–13205 (1996).

    Article  Google Scholar 

  20. Priori, S.G., Napolitano, C., Cantu, F., Brown, A.M. & Schwartz, P.J. Differential response to Na+ channel blockade, β-adrenergic stimulation, and rapid pacing in a cellular model mimicking the SCN5A and HERG defects present in the long-QT syndrome. Circ. Res. 78, 1009–1015 (1996).

    Article  Google Scholar 

  21. Shimizu, W. & Antzelevitch, C. Differential effects of β-adrenergic agonists and antagonists in LQT1, LQT2 and LQT3 models of the long QT syndrome. J. Am. Coll. Cardiol. 35, 778–786 (2000).

    Article  Google Scholar 

  22. Clancy, C.E. & Rudy, Y. Linking a genetic defect to its cellular phenotype in a cardiac arrhythmia. Nature 400, 566–569 (1999).

    Article  Google Scholar 

  23. Antzelevitch, C., Yan, G.X. & Shimizu, W. Transmural dispersion of repolarization and arrhythmogenicity: The Brugada syndrome versus the long QT syndrome. J. Electrocardiol. 32, 158–165 (1999).

    Article  Google Scholar 

  24. Davies, M.P. et al. Developmental changes in ionic channel activity in the embryonic murine heart. Circ. Res. 78, 15–25 (1996).

    Article  Google Scholar 

  25. Moss, A.J. et al. ECG T-wave patterns in genetically distinct forms of the hereditary long QT syndrome. Circulation 92, 2929–2934 (1995).

    Article  Google Scholar 

  26. Bezzina, C.R., Rook, M.B. & Wilde, A.A. Cardiac Na+ channel and inherited arrhythmia syndromes. Cardiovasc. Res. 49, 257–271 (2001).

    Article  Google Scholar 

  27. Shimizu, W. & Antzelevitch, C. Cellular basis for the ECG features of the LQT1 form of the long-QT syndrome: Effects of β-adrenergic agonists and antagonists and Na+ channel blockers on transmural dispersion of repolarization and torsade de pointes. Circulation 98, 2314–2322 (1998).

    Article  Google Scholar 

  28. Drici, M.D. et al. Involvement of IsK-associated K+ channel in heart rate control of repolarization in a murine engineered model of Jervell and Lange–Nielsen syndrome. Circ. Res. 83, 95–102 (1998).

    Article  Google Scholar 

  29. Casimiro, M.C. et al. Targeted disruption of the Kcnq1 gene produces a mouse model of Jervell and Lange–Nielsen Syndrome. Proc. Natl. Acad. Sci. USA 98, 2526–2531 (2001).

    Article  Google Scholar 

  30. Nerbonne, J.M. Molecular basis of functional voltage-gated K+ channel diversity in the mammalian myocardium. J. Physiol. 525 (Pt 2), 285–298 (2000).

    Article  Google Scholar 

  31. Burashnikov, A. & Antzelevitch, C. Acceleration-induced action potential prolongation and early afterdepolarizations. J. Cardiovasc. Electrophysiol. 9, 934–948 (1998).

    Article  Google Scholar 

  32. Shimizu, W. & Antzelevitch, C. Cellular and ionic basis for T-wave alternans under long-QT conditions. Circulation 99, 1499–1507 (1999).

    Article  Google Scholar 

  33. Zhou, J., Jeron, A., London, B., Han, X. & Koren, G. Characterization of a slowly inactivating outward current in adult mouse ventricular myocytes. Circ. Res. 83, 806–814 (1998).

    Article  Google Scholar 

  34. Boyett, M.R. & Jewell, B.R. Analysis of the effects of changes in rate and rhythm upon electrical activity in the heart. Prog. Biophys. Mol. Biol. 36, 1–52 (1980).

    Article  Google Scholar 

  35. Viswanathan, P.C. & Rudy, Y. Pause induced early afterdepolarizations in the long QT syndrome: a simulation study. Cardiovasc. Res. 42, 530–542 (1999).

    Article  Google Scholar 

  36. Dzhura, I., Wu, Y., Colbran, R.J., Balser, J.R. & Anderson, M.E. Calmodulin kinase determines calcium-dependent facilitation of L-type calcium channels. Nature Cell Biol. 2, 173–177 (2000).

    Article  Google Scholar 

  37. Chen, Q. et al. Genetic basis and molecular mechanism for idiopathic ventricular fibrillation. Nature 392, 293–296 (1998).

    Article  Google Scholar 

  38. Viskin, S. Cardiac pacing in the long QT syndrome: review of available data and practical recommendations. J. Cardiovasc. Electrophysiol. 11, 593–600 (2000).

    Article  Google Scholar 

  39. Carmeliet, P. et al. Impaired myocardial angiogenesis and ischemic cardiomyopathy in mice lacking the vascular endothelial growth factor isoforms VEGF164 and VEGF188. Nature Med. 5, 495–502 (1999).

    Article  Google Scholar 

  40. Sagie, A., Larson, M.G., Goldberg, R.J., Bengtson, J.R. & Levy, D. An improved method for adjusting the QT interval for heart rate (the Framingham Heart Study). Am. J. Cardiol. 70, 797–801 (1992).

    Article  Google Scholar 

Download references

Acknowledgements

We thank D. Boon, K. Bijnens, M. De Mol, B. Hermans, S. Jansen, L. Kieckens, A. Vandenhoeck, S.Wyns and Roel Spatjens for assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Carmeliet.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nuyens, D., Stengl, M., Dugarmaa, S. et al. Abrupt rate accelerations or premature beats cause life-threatening arrhythmias in mice with long-QT3 syndrome. Nat Med 7, 1021–1027 (2001). https://doi.org/10.1038/nm0901-1021

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm0901-1021

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing