Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

A new method for screening anti-infective biomaterials

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Rent or buy this article

Prices vary by article type



Prices may be subject to local taxes which are calculated during checkout

Figure 1: The microplate comb.
Figure 2: Microplate-comb model-ELISA (adhesion assay).
Figure 3: Microplate-comb model-proliferation assay: Measuring antimicrobial properties.


  1. Bisno, A.L. & Waldvogel, F.A. Infections Associated With Indwelling Medical Devices. 2nd edn. (American Society for Microbiology, Washington, DC, 1994).

    Google Scholar 

  2. Zhao, G. & Stevens, E. Multiple parameters for the comprehensive evaluation of the susceptibility of Escherichia coli to the silver ion. Biometals 11, 27–32 (1998).

    Article  CAS  Google Scholar 

  3. Mermel, L.A., Stolz, S.M. & Maki, D.G. Surface antimicrobial activity of heparin-bonded and antiseptic-impregnated vascular catheters. J. Infect. Dis. 167, 920–924 (1993).

    Article  CAS  Google Scholar 

  4. Jansen, B., Rinck, M., Wolbring, P., Strohmeier, A. & Jahns, T. In vitro evaluation of the antimicrobial efficacy and biocompatibility of a silver-coated central venous catheter. J. Biomat. Appl. 9, 55–70 (1994).

    Article  CAS  Google Scholar 

  5. Böswald, M. et al. Antimicrobial activity and biocompatibility of polyurethane and silicone catheters containing low concentrations of silver: A new perspective in prevention of polymer-associated foreign-body infections. Zbl. Bakt. 283, 187–200 (1995).

    Article  Google Scholar 

  6. Christensen, G.D., Baldassarri, L. & Simpson, W.A. With Indwelling Medical Devices 2nd edn. (eds. Bisno, A.L. & Waldvogel, F.A.) (American Society for Microbiology, Washington, DC, 1994).

    Google Scholar 

  7. Christensen, G.D. et al. Adherence of coagulase-negative Staphylococci to plastic tissue culture plates: a quantitative model for the adherence of Staphylococci to medical devices. J. Clin. Microbiol. 22, 996–1006 (1985).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Merritt, K., Gaind, A. & Anderson, J.M. Detection of bacterial adherence on biomedical polymers. J. Biomed. Mater. Res. 39, 415–422 (1998).

    Article  CAS  Google Scholar 

  9. Thomas, V.L., Sanford, B.A., Moreno, R. & Ramsay, M.A. Enzyme-linked lectin sorbent assay measures N-acetyl-d-glucosamine in matrix of biofilm produced by Staphylococcus epidermidis. Curr. Microbiol. 35, 249–254 (1997).

    Article  CAS  Google Scholar 

  10. Dunne, W.M., Jr. & Burd, E.M. In vitro measurement of the adherence of Staphylococcus epidermidis to plastic by using cellular urease as a marker. Appl. Env. Microbiol. 57, 863–866 (1991).

    CAS  Google Scholar 

  11. Behr, A. et al. Reduktion von katheterassoziierten infektionen durch die imprägnierung eines zentralvenösen katheters mit niedrigen konzentrationen an silber: Ergebnisse einer europäischen multizenterstudie. Intensivmed 35, 475 (1998).

    Google Scholar 

  12. Guggenbichler, J.P., Böswald, M., Lugauer, S. & Krall, T. A new technology of microdispersed silver in polyurethane induces antimicrobial activity in central venous catheters. Infection 27, Suppl. 1, 16–23 (1999).

    Article  Google Scholar 

  13. Mack, D., Siemssen, N. & Laufs, R. Parallel induction by glucose of adherence and a polysaccharide antigen specific for plastic-adherent Staphylococcus epidermidis: Evidence for functional relation to intercellular adherence. Infect. Immun. 60, 2048–2057 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Heilmann, C., Gerke, C., Perdreau-Remington, F. & Götz, F. Characterization of Tn917 insertion mutants of Staphylococcus epidermidis affected in biofilm formation. Infect. Immun. 64, 277–282 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Tebbs, S.E. & Elliott, T.S. Modification of central venous catheter polymers to prevent in vitro microbial colonisation. Eur. J. Clin. Microbiol. Inf. Dis. 13, 111–117 (1994).

    Article  CAS  Google Scholar 

  16. Bechert, T. et al. The Erlanger silver catheter: in vitro results for antimicrobial activity. Infection 27, Suppl. 1, 24–29 (1999).

    Article  Google Scholar 

  17. Joyce-Wöhrmann, R.M. & Münstedt, H. Determination of the silver ion release from polyurethane enriched with silver. Infection 27, Suppl. 1, 46–48 (1999).

    Article  Google Scholar 

  18. Maki, D.G., Weise, C.E. & Sarafin, H.W. A semiquantitative culture method for identifying intravenous catheter-related infection. N. Engl. J. Med. 296, 1305–1309 (1977).

    Article  CAS  Google Scholar 

Download references


This work was supported by a grant of the Bayerische Forschungsstiftung. We thank R. Joyce-Wöhrmann, T. Hentschel, K. Bär and J. Plonbon for the preparation of biomaterial probes. We thank D. Arndt-Jovin, B. Ludwig and S. Diekmann for helpful comments on the manuscript.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Thorsten Bechert.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Bechert, T., Steinrücke, P. & Guggenbichler, JP. A new method for screening anti-infective biomaterials. Nat Med 6, 1053–1056 (2000).

Download citation

  • Issue Date:

  • DOI:

This article is cited by


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing