Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Pyrazinamide inhibits the eukaryotic-like fatty acid synthetase I (FASI) of Mycobacterium tuberculosis


Tuberculosis treatment is shortened to six months by the indispensable addition of pyrazinamide (PZA) to the drug regimen that includes isoniazid and rifampin1,2. PZA is a pro-drug of pyrazinoic acid (POA) (ref. 3), whose target of action has never been identified. Although PZA is active only against Mycobacterium tuberculosis, the PZA analog 5-chloro-pyrazinamide (5-Cl-PZA) displays a broader range of anti-mycobacterial activity4. We have found that the eukaryotic-like fas1 gene5 (encoding fatty acid synthetase I, FASI) from M. avium, M. bovis BCG or M. tuberculosis confers resistance to 5-Cl-PZA when present on multi-copy vectors in M. smegmatis. 5-Cl-PZA and PZA markedly inhibited the activity of M. tuberculosis FASI, the biosynthesis of C16 to C24/C26 fatty acids from acetyl-CoA (ref. 6). Importantly, PZA inhibited FASI in M. tuberculosis in correlation with PZA susceptibility. These results indicate that FASI is a primary target of action for PZA in M. tuberculosis. Further characterization of FASI as a drug target for PZA may allow the development of new drugs to shorten the therapy against M. tuberculosis and may provide more options for treatment against M. bovis, M. avium and drug resistant M. tuberculosis.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: 5-Cl-PZA and PZA inhibit Fasi in mycobacteria.
Figure 2: PZA inhibits M. tuberculosis FASI in mycobacteria.


  1. Bass Jr, J.B. et al. Treatment of tuberculosis infection in adults and children. Am. J. Respir. Crit. Care. Med. 149, 1359–1374 (1994).

    Article  PubMed  Google Scholar 

  2. Steele, M.A. & Des Prez, R.M. The role of pyrazinamide in tuberculosis chemotherapy. Chest. 94, 845–850 (1988).

    Article  CAS  PubMed  Google Scholar 

  3. Konno K., Feldmann, F.M. & McDermott, W. Pyrazinamide susceptibility and amidase activity of tubercle bacilli. Am. Rev. Respir. Dis. 95, 461–469 (1967).

    CAS  PubMed  Google Scholar 

  4. Cynamon, M.H., Speirs, R.J. & Welch, J.T. In vitro antimycobacterial activity of 5-chloropyrazinamide. Antimicrob. Agents. Chemother. 42, 462–463 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Fernandes, N.D. & Kolattukudy, P.E. Cloning, sequencing and characterization of a fatty acid synthase –encoding gene from Mycobacterium tuberculosis variant BCG. Gene. 170, 95–99 (1996).

    Article  CAS  PubMed  Google Scholar 

  6. Brindley, D.N., Matsumura, S & Bloch, K. Mycobacterium phlei fatty acid synthetase a bacterial multienzyme complex. Nature 224, 666–669 (1969).

    Article  CAS  Google Scholar 

  7. Kushner, S. et al. Experimental chemotherapy of tuberculosis. The synthesis of pyrazinamide and related compounds. J. Am. Chem. Soc. 74, 3617–3621 (1952).

    Article  CAS  Google Scholar 

  8. Scorpio, A & Zhang, Y. Mutations in pncA a gene encoding pyrazinamidase/nicotinamidase cause resistance to the antituberculosis drug pyrazinamide in M. tuberculosis. Nature Med. 2, 662–667 (1996).

    Article  CAS  PubMed  Google Scholar 

  9. Scorpio, A. et al. Characterization of the pncA mutations in pyrazinamide–resistant Mycobacterium tuberculosis. Antimicrob. Agents. Chemother. 41, 540–543 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Good, R.C., Silcox, V.A., Kilborn, J.O & Plikaytis, B.D. Identification and drug susceptibility test results for Mycobacteria species. Clin. Microbiol.. Newslett. 7, 133–136 (1985).

    Article  Google Scholar 

  11. McDermott W. & Tompsett, R. Activation of pyrazinamide and nicotinamide in acidic environments in vitro. Am. Rev. Tuber. 70, 748–754 (1954).

    CAS  Google Scholar 

  12. Zhang, Y., Scorpio, A., Nikaido, H & Sun, Z. Role of Acid pH and deficient efflux of pyrazinoic acid in unique susceptibility of Mycobacterium tuberculosis to pyrazinamide. J. Bacteriol. 181, 2044–2049 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Cynamon, M.H. et al. Pyrazinoic acid esters with broad spectrum in vitro antimycobacterial activity. J. Med. Chem. 38, 3902–3907 (1995).

    Article  CAS  PubMed  Google Scholar 

  14. Banerjee. A. et al. inhA, a gene encoding a target for isoniazid and ethionamide in Mycobacterium tuberculosis. Science 263, 227–230 (1994).

    Article  CAS  PubMed  Google Scholar 

  15. Telenti, A. et al. The emb operon, a gene cluster of Mycobacterium tuberculosis involved in resistance to ethambutol. Nature Med. 3, 567–570 (1997).

    Article  CAS  PubMed  Google Scholar 

  16. Kolattukudy, P.E., Fernandes, N.D., Azad., A.K., Fitzmaurice, A.M & Sirakova, A.T. Biochemistry and molecular genetics of cell-wall lipid biosynthesis in mycobacteria. Mol. Microbiol. 24, 263–270 (1997).

    Article  CAS  PubMed  Google Scholar 

  17. Cole, S.T. et al. Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature 393, 537–544 (1998).

    Article  CAS  PubMed  Google Scholar 

  18. Kikuchi, S., Rainwater, D.L & Kolattukudy, P.E. Purification and characterization of an usually large fatty acid synthase, from Mycobacterium tuberculosis var. bovis BCG. Arch. Biochem. Biophys. 295, 318–326 (1992).

    Article  CAS  PubMed  Google Scholar 

  19. Anderson, R.J. The chemistry of the lipoids of tubercle bacilli. J. Biol. Chem. 135, 327–337 (1929).

    Google Scholar 

  20. Folch, J., Lees, M. & Sloane-Stanley, G.H.S. A simple method for the isolation and purification of total lipids from animal tissues. J. Biol. Chem. 226, 497–509 (1957).

    CAS  PubMed  Google Scholar 

  21. Slayden, R. A. et al. Antimycobacterial action of thiolactomycin: an inhibitor of fatty acid and mycolic acid synthesis. Antimicrob. Agents. Chemother. 40, 2813–2819 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Omura, S. Cerulenin. Methods. Enzymol. 72, 520–532 (1981).

    Article  CAS  PubMed  Google Scholar 

  23. Mdluli, K. et al. Inhibition of a Mycobacteria tuberculosis -Ketoacyl ACP synthase by isoniazid. Science 280, 1607–1610 (1998).

    Article  CAS  PubMed  Google Scholar 

  24. Takayama, K., Schonoes, H.K., Armstrong, E.L & Boyle, R.D. Site of inhibitory action of isoniazid in the synthesis of mycolic acids in Mycobacterium Tuberculosis. J. Lipid Res. 16, 308–317 (1975).

    CAS  PubMed  Google Scholar 

  25. Mehta, A., Oeser, A.M., Carlson, M.G. Rapid quantitation of free fatty acids in human plasma by high-performance liquid chromatography. J. Chromatog. B. 719, 9–23 (1998).

    Article  CAS  Google Scholar 

  26. Hagen, S.R, Thompson J.D. Analysis of mycolic acids by high- performance liquid chromatography and fluorimetric detection. Implication for the identification of mycobacteria in clinical samples. J. Chromatog. A. 692, 167–172 (1995).

    Article  CAS  Google Scholar 

  27. Bloch, K. Fatty acid synthases from Mycobacterium phlei. Methods Enzymol. 35, 84–90 (1975).

    Article  CAS  PubMed  Google Scholar 

  28. Centers for Disease Control and Prevention. Prevention and treatment of tuberculosis among patients infected with Human Immunodeficiency Virus: Principles of therapy and revised recommendations. MMWR. Morb. Mortal. Wkly. Rep. 47 (RR20) 1–51 (1998).

  29. Mitchison, D.A. The action of antituberculosis drugs in short-course chemotherapy of M. tuberculosis. Tubercle 66, 219 (1985).

    Article  CAS  PubMed  Google Scholar 

  30. Grosset, J. The sterilizing value of rifampin and pyrazinamide in experimental short course chemotherapy. Tubercle 59, 287–297 (1978).

    Article  Google Scholar 

  31. McCune, R.M., Jr., Tompsett, R., Mcdermott, W.J. The fate of Mycobacterium tuberculosis in mouse as determined by the microbial enumeration technique. J. Exp. Med. 104, 763–803 (1956).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Salfinger, M., Crowle, A.J. & Reller, L.B. Pyrazinamide and pyrazinoic acid activity against tubercle bacilli in cultured human macrophages and in the BACTEC system. J. Infect. Dis. 162, 201–207. (1990).

    Article  CAS  PubMed  Google Scholar 

Download references


We thank: A. Kiener of the Biotec division of Lonza for providing 5-hydroxy-pyrazinoic acid, Carlos Vaamonde for M. avium cosmid library, John Chan for critical review of the manuscript, T. Weisbord and R. Lucos for sequence analysis, Ms. J. Nguyen and N. Nakata for help in isolation and processing 5-Cl-PZA resistant mutants. O.Z is a fellow on the Molecular Pathogenesis of Infectious Diseases training grant from the National Institutes of Health.

Author information

Authors and Affiliations


Corresponding author

Correspondence to William R. Jacobs Jr..

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Zimhony, O., Cox, J., Welch, J. et al. Pyrazinamide inhibits the eukaryotic-like fatty acid synthetase I (FASI) of Mycobacterium tuberculosis. Nat Med 6, 1043–1047 (2000).

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI:

This article is cited by


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing