Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Upregulation of RGS7 may contribute to tumor necrosis factor-induced changes in central nervous function

Abstract

The central nervous dysfunctions of lethargy, fever and anorexia are manifestations of sepsis that seem to be mediated by increased cytokine production. Here we demonstrate that tumor necrosis factor (TNF)-α, an essential mediator of endotoxin-induced sepsis, prevents the proteasome-dependent degradation of RGS7, a regulator of G-protein signaling. The stabilization of RGS7 by TNF-α requires activation of the stress-activated protein kinase p38 and the presence of candidate mitogen-activated protein kinase phosphorylation sites. In vivo, RGS7 is rapidly upregulated in mouse brain after exposure to either endotoxin or TNF-α, a response that is nearly abrogated in mice lacking TNF receptor 1. Our findings indicate that TNF-mediated upregulation of RGS7 may contribute to sepsis-induced changes in central nervous function.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Increased accumulation of RGS7 induced by TNF-α.
Figure 2: Stabilization of RGS7 induced by TNF-α depends on candidate MAPK sites in Q170 and P248.
Figure 3: Activation of mitogen-activated protein kinase p38 is required for TNF-induced upregulation of RGS7.
Figure 4: Dominant-negative mutants of MEK1, ERK1/2, and PKC isozymes fail to suppress the TNF-mediated upregulation of RGS7.
Figure 5: LPS and TNF-α increase RGS7 protein levels in mouse brain.

Similar content being viewed by others

References

  1. Haimovitz-Friedman, A. et al. Lipopolysaccharide induces disseminated endothelial apoptosis requiring ceramide generation. J. Exp. Med. 186, 1831–1841 (1997).

    Article  CAS  Google Scholar 

  2. Selby, P. et al. Tumour necrosis factor in man: clinical and biological observations. Br. J. Cancer 56, 803– 808 (1987).

    Article  CAS  Google Scholar 

  3. Waage, A., Brandtzaeg, P., Espevik, T. & Halstensen, A. Current understanding of the pathogenesis of gram-negative shock. Infect. Dis. Clin. North Am. 5, 781– 791 (1991).

    CAS  PubMed  Google Scholar 

  4. Remick, D.G. & Kunkel, S.L. Pathophysiologic alterations induced by tumor necrosis factor. Int. Rev. Exp. Pathol. 34 , 7–25 (1993).

    Article  Google Scholar 

  5. Kapas, L. et al. Somnogenic, pyrogenic, and anorectic activities of tumor necrosis factor-alpha and TNF-alpha fragments. Am. J. Physiol. 263, R708–715 (1992).

    Article  CAS  Google Scholar 

  6. Dunn, A.J. & Swiergiel, A.H. The role of cytokines in infection-related behavior. Ann. NY Acad. Sci. 840, 577– 85 (1998).

    Article  CAS  Google Scholar 

  7. Fang, J., Wang, Y. & Krueger, J.M. Mice lacking the TNF 55 kDa receptor fail to sleep more after TNFalpha treatment. J. Neurosci. 17, 5949–5955 (1997).

    Article  CAS  Google Scholar 

  8. Dohlman, H.G. & Thorner J. RGS proteins and signaling by heterotrimeric G proteins. J. Biol. Chem. 272, 3871–384 (1997).

    Article  CAS  Google Scholar 

  9. Berman, D.M. & Gilman A.G. Mammalian RGS proteins: barbarians at the gate. J. Biol. Chem. 273, 1269–1272 (1998).

    Article  CAS  Google Scholar 

  10. Kehrl, J.H. Heterotrimeric G protein signaling: roles in immune function and fine- tuning by RGS proteins. Immunity 8, 1– 10 (1998).

    Article  CAS  Google Scholar 

  11. Koelle, M.R. A new family of G-protein regulators - the RGS proteins. Curr. Opin. Cell Biol. 9, 143–147 (1997).

    Article  CAS  Google Scholar 

  12. Koelle, M.R., Horvitz HR. EGL-10 regulates G protein signaling in the C. elegans nervous system and shares a conserved domain with many mammalian proteins. Cell 84, 115–125 (1996).

    Article  CAS  Google Scholar 

  13. Gold, S.J., Ni, Y.G., Dohlman, H.G. & Nestler, E.J. Regulators of G-protein signaling (RGS) proteins: region-specific expression of nine subtypes in rat brain. J. Neurosci. 17, 8024– 8037 (1997).

    Article  CAS  Google Scholar 

  14. Wang, J. et al. RGSZ1, a Gz-selective RGS protein in brain. Structure, membrane association, regulation by galphaz phosphorylation, and relationship to a gz gtpase-activating protein subfamily. J. Biol. Chem. 273, 26014–26025 (1998).

    Article  CAS  Google Scholar 

  15. Glick, J.L., Meigs, T.E., Miron, A. & Casey, P.J. RGSZ1, a Gz-selective regulator of G protein signaling whose action is sensitive to the phosphorylation state of gzalpha. J. Biol. Chem. 273, 26008 –26013 (1998).

    Article  CAS  Google Scholar 

  16. Ingi, T. et al. Dynamic regulation of RGS2 suggests a novel mechanism in G-protein signaling and neuronal plasticity. J. Neurosci. 18, 7178–7188 (1998).

    Article  CAS  Google Scholar 

  17. Shuey, D.J., Betty, M., Jones, P.G., Khawaja, X.Z. & Cockett, M.I. RGS7 attenuates signal transduction through the G(alpha q) family of heterotrimeric G proteins in mammalian cells. J. Neurochem. 70, 1964–1972 ( 1998).

    Article  CAS  Google Scholar 

  18. Thomas, E.A., Danielson, P.E. & Sutcliffe, J.G. RGS9: a regulator of G-protein signalling with specific expression in rat and mouse striatum. J. Neurosci. Res. 52, 118–124 (1998).

    Article  CAS  Google Scholar 

  19. Saugstad, J.A., Marino, M.J., Folk, J.A., Hepler, J.R. & Conn, P.J. RGS4 inhibits signaling by group I metabotropic glutamate receptors. J. Neurosci. 18, 905– 913 (1998).

    Article  CAS  Google Scholar 

  20. Kim, E. et al. Interaction between RGS7 and polycystin. Proc. Natl. Acad. Sci. USA 96, 6371–6376 (1999).

    Article  CAS  Google Scholar 

  21. Aberle, H., Bauer, A., Stappert, J., Kispert, A. & Kemler, R. beta-catenin is a target for the ubiquitin-proteasome pathway. Embo. J. 16, 3797– 3804 (1997).

    Article  CAS  Google Scholar 

  22. Salomon, D. et al. Regulation of beta-catenin levels and localization by overexpression of plakoglobin and inhibition of the ubiquitin-proteasome system. J. Cell. Biol. 139, 1325–35 (1997).

    Article  CAS  Google Scholar 

  23. Abu-Amer, Y., Ross, F.P., Edwards, J. & Teitelbaum, S.L. Lipopolysaccharide-stimulated osteoclastogenesis is mediated by tumor necrosis factor via its P55 receptor. J. Clin. Invest. 100, 1557– 1565 (1997).

    Article  CAS  Google Scholar 

  24. He,W., Cowan, C.W. & Wensel, T.G. RGS9, a GTPase accelerator for phototransduction. Neuron 20, 95–102 (1998).

    Article  Google Scholar 

  25. Khawaja, X.Z. et al. Immunohistochemical distribution of RGS7 protein and cellular selectivity in colocalizing with Galphaq proteins in the adult rat brain. J. Neurochem. 72, 174– 184 (1999).

    Article  CAS  Google Scholar 

  26. Segalat, L., Elkes, D.A. & Kaplan, J.M. Modulation of serotonin-controlled behaviors by Go in Caenorhabditis elegans. Science 267, 1648–1651 (1995).

    Article  CAS  Google Scholar 

  27. Saitoh, O. et al. RGS7 and RGS8 differentially accelerate G protein-mediated modulation of K+ currents. J. Biol. Chem. 274, 9899–9904 (1999).

    Article  CAS  Google Scholar 

  28. Hershko, A. & Ciechanover, A. The ubiquitin system. Annu. Rev. Biochem. 67, 425–479 (1998).

    Article  CAS  Google Scholar 

  29. Rechsteiner, M. PEST sequences are signals for rapid intracellular proteolysis. Semin. Cell Biol. 1, 433–440 (1990).

    CAS  PubMed  Google Scholar 

  30. Pulverer, B.J., Kyriakis, J.M., Avruch, J., Nikolakaki, E. & Woodgett, J.R. Phosphorylation of c-jun mediated by MAP kinases. Nature 353, 670– 674 (1991).

    Article  CAS  Google Scholar 

  31. Musti, A.M., Treier, M. & Bohmann, D. Reduced ubiquitin-dependent degradation of c-Jun after phosphorylation by MAP kinases. Science 275, 400–402 (1997).

    Article  CAS  Google Scholar 

  32. Boone, E., Vandevoorde, V., De Wilde, G. & Haegeman, G. Activation of p42/p44 mitogen-activated protein kinases (MAPK) and p38 MAPK by tumor necrosis factor (TNF) is mediated through the death domain of the 55-kDa TNF receptor. FEBS Lett. 441, 275 –280 (1998).

    Article  CAS  Google Scholar 

  33. Arnould, T. et al. The polycystic kidney disease 1 gene product mediates protein kinase C alpha-dependent and c-Jun N-terminal kinase-dependent activation of the transcription factor AP-1. J. Biol. Chem. 273 , 6013–6018 (1998).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank A. Goldberg for advice on this manuscript. T.B. was supported by a fellowship of the Deutsche Forschungsgemeinschaft (DFG). This work was supported by NIH-RO1 DK52897 (G.W.) and PHS grant MH01147 (E.K.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emily Kim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Benzing, T., Brandes, R., Sellin, L. et al. Upregulation of RGS7 may contribute to tumor necrosis factor-induced changes in central nervous function. Nat Med 5, 913–918 (1999). https://doi.org/10.1038/11354

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/11354

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing