Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Oncolytic virus therapy of multiple tumors in the brain requires suppression of innate and elicited antiviral responses

Abstract

The occurrence of multiple tumors in an organ heralds a rapidly fatal course. Although intravascular administration may deliver oncolytic viruses/vectors to each of these tumors, its efficiency is impeded by an antiviral activity present in complement-depleted plasma of rodents and humans. Here, this activity was shown to interact with complement in a calcium-dependent fashion, and antibody neutralization studies indicated preimmune IgM has a contributing role. Short-term exposure to cyclophosphamide (CPA) partially suppressed this activity in rodents and humans. At longer time points, cyclophosphamide also abrogated neutralizing antibody responses. Cyclophosphamide treatment of rats with large single or multiple intracerebral tumors substantially increased viral survival and propagation, leading to neoplastic regression.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: CPA inhibits the generation of neutralizing antibodies in immunocompetent or athymic rats.
Figure 2: Presence of an innate antiviral activity in rat plasma that is CPA-labile.
Figure 3: The innate antiviral activity is also present in human plasma.
Figure 4: The innate antiviral activity interacts with complement in a calcium-dependent manner.
Figure 5: Pretreatment of rat plasma with rabbit antibody against rat IgM abrogates the innate antiviral activity in a dose-dependent manner.
Figure 6: Intravascular administration of oncolytic virus to a single human U87dEGFR glioma xenograft in rat brain.
Figure 7: Intravascular administration of oncolytic virus to human glioma xenografts established in brains of nude rats.

Similar content being viewed by others

References

  1. Schuler, M. et al. A phase I study of adenovirus-mediated wild-type p53 gene transfer in patients with advanced non-small cell lung cancer. Hum. Gene Ther. 9, 2075–2082 (1998).

    Article  CAS  PubMed  Google Scholar 

  2. Chase, M., Chung, R.Y. & Chiocca, E.A. An oncolytic viral mutant that delivers the CYP2B1 transgene and augments cyclophosphamide chemotherapy. Nature Biotechnol. 16, 444–448 (1998).

    Article  CAS  Google Scholar 

  3. Bui, L.A. et al. In vivo therapy of hepatocellular carcinoma with a tumor-specific adenoviral vector expressing interleukin-2. Hum. Gene Ther. 8, 2173–2182 (1997).

    Article  CAS  PubMed  Google Scholar 

  4. Martuza, R.L., Malick, A., Markert, J.M., Ruffner, K.I. & Coen, D.M. Experimental therapy of human glioma by means of a genetically engineered virus mutant. Science 252, 854–856 (1991).

    Article  CAS  PubMed  Google Scholar 

  5. Boviatsis, E.J. et al. Long-term survival of rats harboring brain neoplasms treated with ganciclovir and a herpes simplex virus vector that retains an intact thymidine kinase gene. Cancer Res. 54, 5745–5751 (1994).

    CAS  PubMed  Google Scholar 

  6. Boviatsis, E.J. et al. Antitumor activity and reporter gene transfer into rat brain neoplasms inoculated with herpes simplex virus vectors defective in thymidine kinase or ribonucleotide reductase. Gene Ther. 1, 323–331 (1994).

    CAS  PubMed  Google Scholar 

  7. Mineta, T., Rabkin, S.D., Yazaki, T., Hunter, W.D. & Martuza, R.L. Attenuated multi-mutated herpes simplex virus-1 for the treatment of malignant gliomas. Nature Med. 1, 938–943 (1995).

    Article  CAS  PubMed  Google Scholar 

  8. Bischoff, J.R. et al. An adenovirus mutant that replicates selectively in p53-deficient human tumor cells. Science 274, 373–376 (1996).

    Article  CAS  PubMed  Google Scholar 

  9. Kucharczuk, J.C. et al. Use of a "replication-restricted" herpes virus to treat experimental human malignant mesothelioma. Cancer Res. 57, 466–471 (1997).

    CAS  PubMed  Google Scholar 

  10. Andreansky, S. et al. Evaluation of genetically engineered herpes simplex viruses as oncolytic agents for human malignant brain tumors. Cancer Res. 57, 1502–1509 (1997).

    CAS  PubMed  Google Scholar 

  11. Pyles, R.B., Warnick, R.E., Chalk, C.L., Szanti, B.E. & Parysek, L.M. A novel multi-mutated HSV-1 strain for the treatment of human brain tumors. Hum. Gene Ther. 8, 533–544 (1997).

    Article  CAS  PubMed  Google Scholar 

  12. Kramm, C.M. et al. Therapeutic efficiency and safety of a second-generation replication-conditional HSV1 vector for brain tumor gene therapy. Hum. Gene Ther. 8, 2057–2068 (1997).

    Article  CAS  PubMed  Google Scholar 

  13. Coffey, M.C., Strong, J.E. & Forsyth, P.A. Reovirus therapy of tumors with activated Ras pathway. Science 282, 1332–1334 (1998).

    Article  CAS  PubMed  Google Scholar 

  14. Rampling, R., Cruickshank, G., MacLean, A. & Brown, M. Therapeutic replication-competent herpes virus. Nature Med. 4, 133 (1998).

    Article  CAS  PubMed  Google Scholar 

  15. Rainov, N.G., Zimmer, C., Chase, M., Kramm, C.M., Chiocca, E.A., Weissleder, R., & Breakefield, X.O. Selective uptake of viral and monocrystalline particles delivered intra-arterially to experimental brain neoplasms. Hum. Gene Ther. 6, 1543–1552 (1995).

    Article  CAS  PubMed  Google Scholar 

  16. Barnett, F.H. et al. Selective delivery of herpes virus vectors to brain tumors. Cancer Gene Ther. 6, 14–20 (1999).

    Article  CAS  PubMed  Google Scholar 

  17. Herrlinger, U. et al. Pre-existing herpes simplex virus 1 (HSV-1) immunity decreases, but does not abolish, gene transfer to experimental brain tumors by a HSV-1 vector. Gene Ther. 5, 809–819 (1998).

    Article  CAS  PubMed  Google Scholar 

  18. Welsh, R.M., O'Donnell, C.L., Reed, D.J. & Rother, R.P. Evaluation of the Gala1-3Gal epitope as a host modification factor eliciting natural humoral immunity to enveloped viruses. J. Virol. 72, 4650–4656 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Cochrane, C.G., Müller-Eberhard, H.J. & Aikin, B.S. Depletion of plasma component in vivo by a protein of cobra venom: its effect on various immunologic reactions. J. Immunol. 105, 55–69 (1970).

    CAS  PubMed  Google Scholar 

  20. James, K. Complement: activation, consequences, and control. Am. J. Med. Technol. 48, 735–742 (1982).

    CAS  PubMed  Google Scholar 

  21. Childs, R.A. et al. Neoglycolipids as probes of oligosaccharide recognition by recombinant and natural mannose-binding proteins of the rat and man. Biochem. J. 262, 131–138 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Elliott, P.J. et al. Unlocking the blood-brain barrier: a role for RMP-7 in brain tumor therapy. Exp. Neurol. 141, 214–224 (1996).

    Article  CAS  PubMed  Google Scholar 

  23. Black, K.L. et al. Intracarotid infusion of RMP-7, a bradykinin analogue, and transport of gallium-68 ethylenediamine tetraacetic acid into human gliomas. J. Neurosurg. 86, 603–609 (1997).

    Article  CAS  PubMed  Google Scholar 

  24. Lemay, D.R. et al. Intravenous RMP-7 increases delivery of ganciclovir into rat brain tumors and enhances the effects of herpes simplex virus thymidine kinase gene therapy. Hum. Gene Ther. 9, 989–995 (1998).

    Article  CAS  PubMed  Google Scholar 

  25. Fike, J.R. et al. Cerebrovascular effects of the bradykinin analogue RMP-7 in normal and irradiated dog brain. J. Neurooncol. 37, 199–215 (1998).

    Article  CAS  PubMed  Google Scholar 

  26. Nishikawa, R. et al. A mutant epidermal growth factor receptor common in human glioma confers enhanced tumorigenicity. Proc. Natl. Acad. Sci. USA 91, 7727–7731 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Fehr, T. et al. T-cell independent IgM and enduring protective IgM antibodies induced by chimeric measles viruses. Nature Med. 4, 945–948 (1998).

    Article  CAS  PubMed  Google Scholar 

  28. Wood, M.J.A., Byrnes, A.P., Pfaff, D.W., Rabkin, S.D. & Charlton, H.M. Inflammatory effects of gene transfer into the CNS with defective HSV-1 vectors. Gene Ther. 1, 283–291 (1994).

    CAS  PubMed  Google Scholar 

  29. Huemer, H.P., et al. Herpes simplex virus binds to human serum lipoprotein. Intervirology 29, 68–76 (1988).

    CAS  PubMed  Google Scholar 

  30. Rother, R.P. et al. A novel mechanism of retrovirus inactivation in human serum mediated by anti-alpha-galactosyl natural antibody. J. Exp. Med. 182, 1345–1355 (1995).

    Article  CAS  PubMed  Google Scholar 

  31. Takeuchi, Y. et al. Sensitization of cells and retroviruses to human serum by (α1-3) galactosyltransferase. Nature 379, 85–88 (1996).

    Article  CAS  PubMed  Google Scholar 

  32. Nagashunmugam, T. et al. In vivo immune evasion mediated by the herpes simplex virus type 1 immunoglobulin G Fc Receptor. J. Virol. 72, 5351–5359 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Lubinski, J.M. et al. Herpes simplex virus type 1 glycoprotein gC mediates immune evasion in vivo. J. Virol. 72, 8257–8263 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Goldstein, D.J. & Weller, S.K. Herpes simplex virus type 1-induced ribonucleotide reductase activity is dispensable for virus growth and DNA synthesis: isolation and characterization of an ICP6 lacZ insertion mutant. J. Virol. 62, 196–205 (1988).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Goldstein, D.J. & Weller S.K. Factor(s) present in herpes simplex virus type 1-infected cells can compensate for the loss of the large subunit of the viral ribonucleotide reductase: characterization of an ICP6 deletion mutant. Virology 166, 41–51 (1988).

    Article  CAS  PubMed  Google Scholar 

  36. Goldstein, D.J. & Weller S.K. An ICP6:lacZ insertional mutagen is used to demonstrate that the UL52 gene of herpes simplex virus type 1 is required for virus growth and DNA synthesis. J. Virol. 62, 2970–2977 (1988).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Roizman, B. & Spear, P.G. Preparation of herpes simplex virus of high titer. J. Virol. 2, 83–84 (1968).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Turner, D.L., Snyder, E.Y. & Cepko, C.L. Lineage-independent determination of cell type in the embryonic mouse retina. Neuron 4, 833–845 (1990).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors acknowledge members of the EAC laboratory for their input in described experiments. We thank N. Rainov (Halle University, Germany) for initial technical aid, K. Suling and S. Jhung (Massachusetts General Hospital) for assistance with analyses by computer, P. Stark (Massachusetts General Hospital) for assistance with statistical analyses, W.P. Petros, S. Ludeman and M. Colvin (Duke University) for human plasma samples, and M. Pasternack (Massachusetts General Hospital) for discussions. This work was supported by an NIH research grant (P01CA 69246).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Antonio Chiocca.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ikeda, K., Ichikawa, T., Wakimoto, H. et al. Oncolytic virus therapy of multiple tumors in the brain requires suppression of innate and elicited antiviral responses. Nat Med 5, 881–887 (1999). https://doi.org/10.1038/11320

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/11320

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing