Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

A mouse model of human familial hypercholesterolemia: Markedly elevated low density lipoprotein cholesterol levels and severe atherosclerosis on a low-fat chow diet

An Erratum to this article was published on 01 October 1998

Abstract

Mutations in the low density lipoprotein (LDL) receptor gene cause familial hypercholesterolemia, a human disease characterized by premature atherosclerosis and markedly elevated plasma levels of LDL cholesterol and apolipoprotein (apo) B100. In contrast, mice deficient for the LDL receptor (Ldlr−/−) have only mildly elevated LDL cholesterol levels and little atherosclerosis. This difference results from extensive editing of the hepatic apoB mRNA in the mouse, which limits apoB100 synthesis in favor of apoB48 synthesis. We have generated Ldlr−/− mice that cannot edit the apoB mRNA and therefore synthesize exclusively apoBIOO. These mice had markedly elevated LDL cholesterol and apoBIOO levels and developed extensive atherosclerosis on a chow diet. This authentic model of human familial hypercholesterolemia will provide a new tool for studying atherosclerosis.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

References

  1. Goldstein, J.L., Hobbs, H.H. & Brown, M.S. Familial hypercholesterolemia. in The Metabolic and Molecular Bases of Inherited Disease, Vol. 2 (eds. Scriver, C.R., Beaudet, A.L., Sly, W.S. & Valle, D.) 1981–2030 (McGraw-Hill, New York, 1995).

    Google Scholar 

  2. Breslow, J.L. Transgenic mouse models of lipoprotein metabolism and atherosclerosis. Proc. Natl.Acad. Sci. USA 90, 8314–8318 (1993).

    Article  CAS  Google Scholar 

  3. Kim, E. & Young, S.G. Genetically modified mice for the study of apolipoprotein B. J. Lipid Res. 39, 703–723 (1998).

  4. Ishibashi, S. et al. Hypercholesterolemia in low density lipoprotein receptor knockout mice and its reversal by adenovirus-mediated gene delivery. J. Clin. Invest. 92, 883–893 (1993).

    Article  CAS  Google Scholar 

  5. Ishibashi, S., Goldstein, J.L., Brown, M.S., Herz, J. & Burns, D.K. Massive xan-thomatosis and atherosclerosis in cholesterol-fed low density lipoprotein receptor-negative mice. J. Clin. Invest. 93, 1885–1893 (1994).

    Article  CAS  Google Scholar 

  6. Davidson, N.O., Anant, S. & MacGinnitie, A.J. Apolipoprotein B messenger RNA editing: Insights into the molecular regulation of post-transcriptional cytidine deamination. Curr. Opin. Lipidol. 6, 70–74 (1995).

    Article  CAS  Google Scholar 

  7. Ishibashi, S. Herz, J., Maeda, N., Goldstein, J.L. & Brown, M.S. The two-receptor model of lipoprotein clearance: Tests of the hypothesis in “knockout” mice lacking the low density lipoprotein receptor, apolipoprotein E, or both proteins. Proc. Natl. Acad. Sic. USA 91, 4431–4435 (1994).

    Article  CAS  Google Scholar 

  8. Herz, J. & Willnow, T.E. Lipoprotein and receptor interactions in vivo . Curr. Opin. Tipi dol. 6, 97–103 (1995).

    CAS  Google Scholar 

  9. Rohlmann, A., Cotthardt, M., Hammer, R.E. & Herz, J. Inducible inactivation of hepatic LRP gene by Cre-mediated recombination confirms role of LRP in clearance of chylomicron remnants. J. Clin. Invest. 101, 689–695 (1998).

    Article  CAS  Google Scholar 

  10. Davidson, N.O., Carlos, R.C., Drewek, M.J. & Parmer, T.G. Apolipoprotein gene expression in the rat is regulated in a tissue-specific manner by thyroid hormone. J. Lipid Res. 29, 1511–1522 (1988).

    CAS  PubMed  Google Scholar 

  11. Davidson, N.O. et al. Proposed nomenclature for the catalytic subunit of the mammalian apolipoprotein B mRNA editing enzyme: APOBEC-1. RNA 1, 3 (1995).

  12. Piedrahita, J.A., Zhang, S.H., Hagaman, J.R., Oliver, P.M. & Maeda, N. Generation of mice carrying a mutant apolipoprotein E gene inactivated by gene targeting in embryonic stem cells. Proc. Natl. Acad. Sci. USA 89, 4471–4475 (1992).

    Article  CAS  Google Scholar 

  13. Zhang, S.H., Reddick, R.L., Piedrahita, J.A. & Maeda, N. Spontaneous hypercho-lesterolemia and arterial lesions in mice lacking apolipoprotein E. Science 258, 468–471 (1992).

    Article  CAS  Google Scholar 

  14. Reddick, R.L., Zhang, S.H. & Maeda, N. Atherosclerosis in mice lacking apo E. Evaluation of lesional development and progression. Arterioscler. Thromb. 14, 141–147 (1994).

    Article  CAS  Google Scholar 

  15. Plump, A.S. et al. Severe hypercholesterolemia and atherosclerosis in apolipoprotein E-deficient mice created by homologous recombination in ES cells. Cell 71, 343–353 (1992).

    Article  CAS  Google Scholar 

  16. Nakashima, Y., Plump, A.S., Raines, E.W., Breslow, J.L. & Ross, R. ApoE-deficient mice develop lesions of all phases of atherosclerosis throughout the arterial tree. Arterioscler. Thromb. 14, 133–140 (1994).

    Article  CAS  Google Scholar 

  17. Farese, R.V. Jr et al. Phenotypic analysis of mice expressing exclusively apolipoprotein B48 or apolipoprotein B100. Proc. Natl. Acad. Sci. USA 93, 6393–6398 (1996).

    Article  CAS  Google Scholar 

  18. Purcell-Huynh, D.A. et al. Transgenic mice expressing high levels of human apolipoprotein B develop severe atherosclerotic lesions in response to a high-fat diet. J. Clin. Inyest. 95, 2246–2257 (1995).

    Article  CAS  Google Scholar 

  19. Liao, F., Andalibi, A., deBeer, F.C., Fogelman, A.M. & Lusis, A.J. Genetic control of inflammatory gene induction and NF-KB-like transcription factor activation in response to an atherogenic diet in mice. J. Clin. Invest. 91, 2572–2579 (1993).

    Article  CAS  Google Scholar 

  20. Fazio, S. et al. Increased atherosclerosis in mice reconstituted with apolipoprotein E null macrophages. Proc. Natl. Acad. Sci. USA 94, 4647–4652 (1997).

    Article  CAS  Google Scholar 

  21. Linton, M.F., Babaev, V.R., Gleaves, L.A., Atkinson, J.B. & Fazio, S. Increased atherosclerosis in C57BL/6 mice transplanted with apolipoprotein E-deficient marrow. Circulation 94 IM (1996).

  22. Bellosta, S. et al. Macrophage-specific expression of human apolipoprotein E reduces atherosclerosis in hypercholesterolemic apolipoprotein E-null mice. J. Clin. Invest. 96, 2170–2179 (1995).

    Article  CAS  Google Scholar 

  23. Willnow, T.E., Sheng, Z., Ishibashi, S., St Herz, J. Inhibition of hepatic chylomicron remnant uptake by gene transfer of a receptor antagonist. Science 264, 1471–1474 (1994).

    Article  CAS  Google Scholar 

  24. Brown, M.S., Herz, J., Kowal, R.C. & Goldstein, J.L. The low-density lipoprotein receptor-related protein: Double agent or decoy? Curr. Opin. Lipidol. 2, 65–72 (1991).

    Article  CAS  Google Scholar 

  25. Willnow, T.E., Goldstein, J.L., Orth, K., Brown, M.S. & Herz, J. Low density lipoprotein receptor-related protein and gp330 bind similar ligands, including plasminogen activator-inhibitor complexes and lactoferrin, an inhibitor of chylomicron remnant clearance. J. Biol. Chem. 267, 26172–26180 (1992).

    CAS  PubMed  Google Scholar 

  26. Véniant, M.M. et al. Susceptibility to atherosclerosis in mice expressing exclusively apolipoprotein B48 or apolipoprotein B100. J. Clin. Invest. 100, 180–188 (1997).

    Article  Google Scholar 

  27. Sanan, D.A. et al. Low density lipoprotein receptor-negative mice expressing apolipoprotein B-100 develop complex atherosclerotic lesions on a chow diet: No accentuation by apolipoprotein(a). Proc. Natl. Acad. Sci. USA 95, 4544–4549 (1998).

    Article  CAS  Google Scholar 

  28. Hirano, K.I. et al. Targeted disruption of the mouse apobec-1 gene abolishes apolipoprotein B mRNA editing and eliminates apolipoprotein B48. J. Biol. Chem. 271, 9887–9890 (1996).

    Article  CAS  Google Scholar 

  29. Linton, M.F. et al. Transgenic mice expressing high plasma concentrations of human apolipoprotein B100 and lipoprotein(a). J. Clin. Invest. 92, 3029–3037 (1993).

    Article  CAS  Google Scholar 

  30. Young, S.G., Bertics, S.J., Curtiss, L.K. & Witztum, J.L. Characterization of an abnormal species of apolipoprotein B, apolipoprotein B-37, associated with familial hypobetalipoproteinemia. J. Clin. Invest. 79, 1831–1841 (1987).

    Article  CAS  Google Scholar 

  31. Kim, E., Cham, C.M., Véniant, M.M., Ambroziak, P. & Young, S.G. Dual mechanisms for the low plasma levels of truncated apolipoprotein B proteins in familial hypobetalipoproteinemia. Analysis of a new mouse model with a nonsense mutation in the Apob gene. J. Clin. Invest. 101, 1468–1477 (1998).

    Article  CAS  Google Scholar 

  32. Palinski, W. et al. ApoE-deficient mice are a model of lipoprotein oxidation in atherogenesis. Demonstration of oxidation-specific epitopes in lesions and high titers of autoantibodies to malondialdehyde-lysine in serum. Arterioscler. Thromb. 14, 605–616 (1994).

    Article  CAS  Google Scholar 

  33. Tangirala, R.K., Rubin, E.M. & Palinski, W. Quantitation of atherosclerosis in murine models: Correlation between lesions in the aortic origin and in the entire aorta, and differences in the extent of lesions between sexes in LDL receptor-deficient and apolipoprotein E-deficient mice. J. Lipid Res. 36, 2320–2328 (1995).

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicholas O. Davidson.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Powell-Braxton, L., Véniant, M., Latvala, R. et al. A mouse model of human familial hypercholesterolemia: Markedly elevated low density lipoprotein cholesterol levels and severe atherosclerosis on a low-fat chow diet. Nat Med 4, 934–938 (1998). https://doi.org/10.1038/nm0898-934

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm0898-934

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing