Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Antisense targeting of basic fibroblast growth factor and dibroblast growth factor receptor-1 in human melanomas blocks intratumoral angiogenesis and tumor growth

Abstract

Unlike normal melanocytes, primary and metastatic human melanomas express high levels of basic fibroblast growth factor (bFGF) and fibroblast growth factor receptor-1 (FGFR-1) messenger RNA, and expression of these genes is essential in sustaining the proliferation of malignant melanomas in vitro. To determine whether bFGF and FGFR-1 are also required for tumor formation in these cells, liposome-mediated gene transfer was used to deliver episomal vectors containing antisense-oriented bFGF or FGFR-1 cDNAs into human melanomas, grown as subcutaneous tumors in nude mice. The growth of tumors injected with these constructs was completely arrested or the tumors regressed as a result of blocked intratumoral angiogenesis and subsequent necrosis. Thus, inhibition of bFGF/FGFR-1-mediated signaling may open a new avenue for the treatment of advanced-stage melanomas.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Marincola, P.M. & Rosenberg, S.A. Biologic therapy with interleukin-2: Preclinical studies. in: Biologic Therapy of Cancer. (eds. DeVita, V.T., Jr., Hellman, S. & Rosenberg, S.A.) 250–262 (Lippincott, Philadelphia, 1995).

    Google Scholar 

  2. Kirkwood, J.M. Biologic therapy with interferon-α and β: Clinical applications. in: Biologic Therapy of Cancer. (eds. DeVita, V.T., Jr., Hellman, S. & Rosenberg, S.A.) 388–411 (Lippincott, Philadelphia, 1995).

    Google Scholar 

  3. Houghton, A.N. & Chapman, P.B. Clinical applications of monoclonal antibodies in cancer. in: Biologic Therapy of Cancer. (eds. DeVita, V.T., Jr., Hellman, S. & Rosenberg, S.A.) 576–590 (Lippincott, Philadelphia, 1995).

    Google Scholar 

  4. Van Der Bruggen, P. et al. A gene encoding an antigen recognized by cytolytic T lymphocytes on a human melanoma. Science 254, 1643–1647 (1991).

    Article  CAS  PubMed  Google Scholar 

  5. Halaban, R., Kwon, B.S., Ghosh, S., Delli-Bovi, P. & Baird, A. bFGF as an autocrine growth factor for human melanomas. Oncogene Res. 3, 177–186 (1988).

    CAS  PubMed  Google Scholar 

  6. Becker, D., Meier, C.B. & Herlyn, M. Proliferation of human malignant melanomas is inhibited by antisense oligodeoxynucleotides targeted against basic fibroblast growth factor. EMBO J. 8, 3685–3691 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Becker, D., Lee, P.L., Rodeck, U. & Herlyn, M. Inhibition of the fibroblast growth factor receptor 1 (FGFR-1) gene in human melanocytes and malignant melanomas leads to inhibition of proliferation and signs indicative of differentiation. Oncogene 7, 2302–2313 (1992).

    Google Scholar 

  8. Abraham, J.A. et al. Human basic fibroblast growth factor: Nucleotide sequence and genomic organization. EMBO J. 5, 2523–2528 (1986).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Johnson, D.E., Lee, P.L., Lu, J. & Williams, L.T. Diverse forms of a receptor for acidic and basic fibroblast growth factors. Mol. Cell. Biol. 10, 4728–4739 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Johnson, D.E., Lu, J., Chen, S., Werner, S. & Williams, L.T. The human fibroblast growth factor genes: A common structural arrangement underlies the mechanism for generating receptors that differ in their third immunoglobulin domain. Mol. Cell. Biol. 11, 4627–4634 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Vignovich, J. & Becker, D. Expression of bFGF and differential expression of FGF receptors in normal human myoblasts and rhabdomyosarcomas. Int. J. Oncol. 2, 637–642 (1993).

    CAS  PubMed  Google Scholar 

  12. Gao, X. & Huang, L. A novel cationic liposome reagent for efficient transfection of mammalian cells. Biochem. Biophys. Res. Commun. 179, 280–285 (1991).

    Article  CAS  PubMed  Google Scholar 

  13. Yang, J.-P. & Huang, L. Direct gene transfer to mouse melanoma by intratumor injection of free DMA. Gene Ther. 3, 542–547 (1996).

    CAS  PubMed  Google Scholar 

  14. Nabel, G.J. et al. Direct gene transfer with DNA-liposome complexes in melanoma: Expression, biologic activity, and lack of toxicity in humans. Proc. Natl. Acad. Sci. USA 90, 11307–11311 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Werner, S. et al. Targeted expression of a dominant-negative FGF receptor mutant in the epidermis of transgenic mice reveals a role of FGF in keratinocyte organization and differentiation. EMBO J. 12, 2635–2643 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Nickoloff, R.J. PECAM-1 (CD31) is expressed on proliferating endothelial cells, stromal spindle-shaped cells, and dermal dendrocytes in Kaposi's sarcoma. J. Clin. Pathol. 43, 752–757 (1993).

    Google Scholar 

  17. Sehested, M. & Hou-Jensen, K. Factor VIII-related antigen as an endothelial cell marker in benign and malignant diseases. Virchows Arch. 391, 217–225 (1981).

    Article  CAS  Google Scholar 

  18. Ledbetter, J.A. & Herzenberg, L.A. Xenogenic monoclonal antibodies to mouse lymphoid differentiation antigens. Immunol. Rev. 47, 63–67 (1979).

    Article  CAS  PubMed  Google Scholar 

  19. Herlyn, M., Mancianti, M.L., Jambrosic, J., Bolen, J.B. & Koprowski, H. Regulatory factors that determine growth and phenotype of normal human melanocytes. Exp. Cell Res. 179, 322–331 (1988).

    Article  CAS  PubMed  Google Scholar 

  20. Rodeck, U. et al. Constitutive expression of multiple growth factor genes by melanoma cells but not normal melanocytes. J. Invest. Dermatol. 97, 20–26 (1991).

    Article  CAS  PubMed  Google Scholar 

  21. Dionne, C.A. et al. Cloning and expression of two distinct high affinity receptors cross-reacting with acidic and basic fibroblast growth factors. EMBO J. 9, 2685–2692 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Keegan, K., Johnson, D.E., Williams, L.T. & Hayman, M.J. Isolation of an additional member of the fibroblast growth factor receptor family, FGFR-3. Proc. Natl. Acad. Sci. USA 88, 1095–1099 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Partanen, J. et al. FGFR-4, a novel acidic fibroblast growth factor receptor with a distinct expression pattern. EMBO J. 10, 1347–1354 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Ferrara, N., Houck, K.A., Jakeman, L.B., Winer, J. & Leung, D.W. The vascular endothelial growth factor family of polypeptides. J. Cell. Biochem. 47, 211–218 (1991).

    Article  CAS  PubMed  Google Scholar 

  25. Folkman, J. Tumor angiogenesis. in: The Molecular Basis of Cancer. (eds. Mendelsohn, J., Howley, P.M., M., Israel, M.A. & Liotta, LA.) 206–232 (Saunders, Philadelphia, 1995).

    Google Scholar 

  26. Hanahan, D. & Folkman, J. Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis. Cell 86, 353–364 (1996).

    Article  CAS  PubMed  Google Scholar 

  27. Wang, Y. et al. Molecular analysis of melanoma precursor lesions. Cell Growth Differ. 7, 1733–1740 (1996).

    CAS  PubMed  Google Scholar 

  28. Elder, D.E., Clark, W.H., Jr., Glenitsas, R., Guerry, D., IV & Halpern, A.C. The early and intermediate precursor lesions of tumor progression in the melanocytic system: Common acquired nevi and atypical (dysplastic) nevi. Semin. Diagn. Pathol. 10, 18–35 (1993).

    CAS  PubMed  Google Scholar 

  29. Parangi, S. et al. Antiangiogenic therapy of transgenic mice impairs de novo tumor growth. Proc. Natl. Acad. Sci. USA 93, 2002–2007 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Singh, R.K. et al. Interferons alpha and beta down-regulate the expression of basic fibroblast growth factor in human carcinomas. Proc. Natl. Acad. Sci. USA 92, 4562–4566 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Brooks, P.C., Clark, R.A.F. & Cheresh, D.A. Requirement of vascular integrin αυβ3 for angiogenesis. Science 264, 569–57 (1994).

    Article  CAS  PubMed  Google Scholar 

  32. Brooks, P.C. et al. Integrin αυβ3 antagonists promote tumor regression by inducing apoptosis of angiogenic blood vessels. Cell 79, 1157–1164 (1994).

    Article  CAS  PubMed  Google Scholar 

  33. Montgomery, A.M.P., Reisfeld, R.A. & Cheresh, D.A. Integrin αυβ3 rescues melanoma cells from apoptosis in a three-dimensional dermal collagen. Proc. Natl. Acad. Sci. USA 91, 8856–8860 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Herlyn, M. et al. Biology of tumor progression in human melanocytes. Lab. Invest. 56, 461–474 (1987).

    CAS  PubMed  Google Scholar 

  35. Walgenbach, K.J., Gratas, C., Shestak, K.C. & Becker, D. Ischaemia-induced expression of bFGF in normal skeletal muscle: A potential paracrine mechanism for mediating angiogenesis in ischaemic skeletal muscle. Nature Med. 1, 453–459 (1995).

    Article  CAS  PubMed  Google Scholar 

  36. Gaynor, E., Irie, R., Morton, D. & Herschman, H.R. S100 protein is present in cultured human malignant melanomas. Nature 286, 400–401 (1980).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, Y., Becker, D. Antisense targeting of basic fibroblast growth factor and dibroblast growth factor receptor-1 in human melanomas blocks intratumoral angiogenesis and tumor growth. Nat Med 3, 887–893 (1997). https://doi.org/10.1038/nm0897-887

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm0897-887

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing