Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Association of simian immunodeficiency virus Nef with cellular serine/threonine kinases is dispensable for the development of AIDS in rhesus macaques

Abstract

The nef gene of simian immunodeficiency virus (SIV) is essential for high viral load and induction of AIDS in rhesus monkeys. A mutant form of the SIVmac239 Net which contains changes in a putative SH3-binding domain (amino acids 104 and 107 have been changed from PxxP to AxxA), does not associate with cellular serine/threonine kinases, but is fully active in CD4 downregulation and associates with the cellular tyrosine kinase Src. Infection of two rhesus macaques with SIVmac239 containing the mutant AxxA-Nef caused AIDS and rapid death in both animals. No reversions were observed in the majority of nef sequences analyzed from different time points during infection and from lymphatic tissues at the time of death. Our findings indicate that the putative SH3-ligand domain in SIVmac Nef and the association with cellular serine/threonine kinases are not important for efficient replication and pathogenicity of SIVmac in rhesus macaques.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Kestler, H.W. et al. Importance of the nef gene for maintenance of high virus loads and for development of AIDS. Cell 65, 651–662 (1991).

    Article  CAS  PubMed  Google Scholar 

  2. Daniel, M.D., Kirchhoff, F., Czajak, S.C., Sehgal, P.K. & Desrosiers, R.C. Protective effects of a live attenuated SIV vaccine with a deletion in the nef gene. Science 258, 1938–1941 (1992).

    Article  CAS  PubMed  Google Scholar 

  3. Du, Z. et al. Identification of a nef allele that causes lymphocyte activation and acute disease in macaque monkeys. Cell 82, 665–674 (1995).

    Article  CAS  PubMed  Google Scholar 

  4. Huang, Y., Zhang, L. & Ho, D.D. Characterization of nef sequences in long-term survivors of human immunodeficiency virus type 1 infection. J. Virol. 69, 93–100 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Michael, N.L. et al. Functional characterization of human immunodeficiency virus type 1 nef genes in patients with divergent rates of disease progression. J. Virol. 69, 6758–6769 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Kirchhoff, F., Greenough, T.C., Brettler, D.B., Sullivan, J.L. & Desrosiers, R.C. Absence of intact nef sequences in a long-term, nonprogressing survivor of HIV-1 infection. N. Engl. J. Med. 332, 228–232 (1995).

    Article  CAS  PubMed  Google Scholar 

  7. Deacon, N.J. et al. Genomic structure of an attenuated quasi species of HIV-1 from a blood transfusion donor and recipients. Science 270, 988–991 (1995).

    Article  CAS  PubMed  Google Scholar 

  8. Garcia, J.V. & Miller, A.D. Serine phosphorylation-independent down-regulation of cell-surface CD4 by Nef. Nature 350, 508–511 (1991).

    Article  CAS  PubMed  Google Scholar 

  9. Mariani, R. & Skowronski, J. CD4 down-regulation by nef alleles isolated from human immunodeficiency virus type 1-infected individuals. Proc. Natl. Acad. Sci. USA 90, 5549–5553 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Skowronski, J., Parks, D. & Mariani, R. Altered T cell activation and development in transgenic mice expressing the HIV-1 nef gene. EMBO J. 12, 703–713 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Goldsmith, M.A., Warmerdam, M.T., Atchison, R.E., Miller, M.D. & Greene, W.C. Dissociation of the CD4 down-regulation and viral infectivity enhancement functions of human immunodeficiency virus type 1 Nef. J. Virol. 69, 4112–4121 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Mariani, R. et al. High frequency of defective nef alleles in a long-term survivor with nonprogressive human immunodeficiency virus type 1 infection. J. Virol. 70, 7752–7764 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Luo, T. & Garcia, J.V. The association of Nef with a cellular serine/threonine kinase and its enhancement of infectivity are viral isolate dependent. J. Virol. 70, 6493–6496 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Luciw, P.A., Cheng Mayer, C. & Levy, J.A. Mutational analysis of the human immunodeficiency virus: The orf-B region down-regulates virus replication. Proc. Natl. Acad. Sci. USA 84, 1434–1438 (1987).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Hammes, S.R., Dixon, E.P., Malim, M.H., Cullen, B.R. & Greene, W.C. Nef protein of human immunodeficiency virus type 1: Evidence against its role as a transcriptional inhibitor. Proc. Natl. Acad. Sci. USA 86, 9549–9553 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Kim, S., Ikeuchi, K., Byrn, R., Groopman, J. & Baltimore, D. Lack of a negative influence on viral growth by the nef gene of human immunodeficiency virus type 1. Proc. Natl. Acad. Sci. USA 86, 9544–9548 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Niederman, T.M., Garcia, J.V., Hastings, W.R., Luria, S. & Ratner, L. Human immunodeficiency virus type 1 Nef protein inhibits NF-kappa B induction in human T cells. J. Virol. 66, 6213–6219 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Chowers, M.Y. et al. Optimal infectivity in vitro of human immunodeficiency virus type 1 requires an intact nef gene. J. Virol. 68, 2906–2914 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Miller, M.D., Warmerdam, M.T., Gaston, I., Greene, W.C. & Feinberg, M.B. The human immunodeficiency virus-1 nef gene product: A positive factor for viral infection and replication in primary lymphocytes and macrophages. J. Exp. Med. 179, 101–114 (1994).

    Article  CAS  PubMed  Google Scholar 

  20. Spina, C.A., Kwoh, T.J., Chowers, M.Y., Guatelli, J.C. & Richman, D.D. The importance of nef in the induction of human immunodeficiency virus type 1 replication from primary quiescent CD4 lymphocytes. J. Exp. Med. 179, 115–123 (1994).

    Article  CAS  PubMed  Google Scholar 

  21. Saksela, K., Cheng, G. & Baltimore, D. Proline-rich (PxxP) motifs in HIV-1 Nef bind to SH3 domains of a subset of Src kinases and are required for the enhanced growth of Nef+ viruses but not for down-regulation of CD4. EMBO J. 14, 484–491 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Lee, C.H. A single amino acid in the SH3 domain of Hck determines its high affinity and specificity in binding to HIV-1 Nef protein. EMBO J. 14, 5006–5015 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Baur, A.S. et al. HIV-1 Nef leads to inhibition or activation of T cells depending on its intracellular localization. Immunity 1, 373–384 (1994).

    Article  CAS  PubMed  Google Scholar 

  24. lafrate, A.J., Bronson, S. & Skowronski, J. Separable functions of Nef disrupt two aspects of T cell receptor machinery: CD4 expression and CD3 signaling. EMBO J. 16, 673–684 (1997).

    Article  Google Scholar 

  25. Lee, C.H., Saksela, K., Mirza, U.A., Chait, B.T. & Kuriyn, J. Crystal structure of the conserved core of HIV-1 Nef complexed with a Src family SH3 domain. Cell 85, 931–942 (1996).

    Article  CAS  PubMed  Google Scholar 

  26. Myers, G., Korber, B., Wain-Hobson, S. & Smith, R.F. HIVand SIV amino acid sequences. in Human Retroviruses and AIDS. (Los Alamos National Laboratory, Los Alamos, NM, 1993).

    Google Scholar 

  27. Sawai, E.T. et al. Human immunodeficiency virus type 1 Nef associates with a cellular serine kinase in T lymphocytes. Proc. Natl. Acad. Sci. USA 91, 1539–1543 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Sawai, E.T. et al. Activation of PAK by HIV and SIV Nef: Importance for AIDS in rhesus macaques. Curr. Biol. 6, 1519–1527 (1996).

    Article  CAS  PubMed  Google Scholar 

  29. Nunn, M.F. & Marsh, J.W. Human immunodeficiency virus type 1 nef associates with a member of the p21-activated kinase family. J. Virol. 70, 6157–6161 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Lu, X. et al. CDC42 and Rac1 are implicated in the activation of the Nef-associated kinase and replication of HIV-1. Curr. Biol. 6, 1677–1684 (1996).

    Article  CAS  PubMed  Google Scholar 

  31. Wyand, M.S., Manson, K.H., Garcia-Moll, M., Monfiori, D. & Desrosiers, R.C. Vaccine protection by a triple deletion mutant of simian immunodeficiency virus. J. Virol. 70, 3724–3733 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Kestler, H. et al. Induction of AIDS in rhesus monkeys by molecularly cloned simian immunodeficiency virus. Science 248, 1109–1112 (1990).

    Article  CAS  PubMed  Google Scholar 

  33. Ho, S.N., Hunt, H.D., Horton, R.M., Pullen, J.K. & Pease, L.R. Site-directed mutagenesis by overlap extension using the polymerase chain reaction. Gene 77, 51–59 (1989).

    Article  CAS  PubMed  Google Scholar 

  34. Regier, D.A. & Desrosiers, R.C. The complete nucleotide sequence of a pathogenic molecular clone of simian immunodeficiency virus. AIDS Res. Hum. Retroviruses 6, 1221–1231 (1990).

    Article  CAS  PubMed  Google Scholar 

  35. Kirchhoff, F., Kestler, H.W. & Desrosiers, R.C. Upstream U3 sequences in SIV are selectively deleted in vivo in the absence of nef function. J. Virol. 68, 2031–2037 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Biesinger, B. et al. Stable growth transformation of human T lymphocytes by herpesvirus saimiri. Proc. Natl. Acad. Sci. USA 89, 3116–3119 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Potts, B.J. “Mini” reverse transcriptase (RT) assay. in Techniques in HIV Research. (eds. Aldovini, A. & Walker, B.D.) 103–106 (Stockton, New York, 1990).

    Google Scholar 

  38. Chackerian, B., Haigwood, N.L. & Overbaugh, J. Characterization of a CD4expressing macaque cell line that can detect virus after a single replication cycle and can be infected by diverse simian immunodeficiency virus isolates. Virology 213, 386–394 (1995).

    Article  CAS  PubMed  Google Scholar 

  39. Skowronski, J. & Mariani, R. Transient assay for Nef-induced down-regulation of CD4 antigen expression on the cell surface. in HIV-1: A Practical Approach. (eds. Rickwood, D. & Hames, B.D.) (Vol. ed., J. Karn) 231–242 (Oxford Univ. Press, Oxford, 1995).

    Google Scholar 

  40. Stahl-Hennig, C. et al. Experimental infection of macaques with HIV-2BEN a novel HIV-2 isolate. AIDS 4, 611–617 (1990).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lang, S., Lafrate, A., Stahl-Hennig, C. et al. Association of simian immunodeficiency virus Nef with cellular serine/threonine kinases is dispensable for the development of AIDS in rhesus macaques. Nat Med 3, 860–865 (1997). https://doi.org/10.1038/nm0897-860

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm0897-860

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing