Abstract
We used data from a population-based cohort study of blacks, Hispanics, Japanese and whites to examine the frequency of prevalent prostate and breast cancer by family history status of first-degree relatives (parents and siblings). Independent of race, the age-adjusted relative risk for prevalent prostate cancer in subjects with affected brothers was approximately two times that in subjects with affected fathers (P < 0.00005). No such excess risk for breast cancer was observed among subjects with affected sisters compared to those with affected mothers (age- and race-adjusted relative risk = 1.10, P= 0.34). The magnitude of the relative risk for prostate cancer in sibling-versus parent-affected groups was significantly different from that of the comparable relative risk for breast cancer (P < 0.00005). An excess risk of prostate cancer in men with affected brothers compared to those with affected fathers is consistent with the hypothesis of an X-linked, or recessive, model of inheritance.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 12 print issues and online access
$209.00 per year
only $17.42 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
References
Narod, S.A. et al. The impact of family history on early detection of prostate cancer. Nature Med. 1, 99–101 (1995).
Woolf, C.M. An investigation of the familial aspects of carcinoma of the prostate. Cancer 13, 739–744 (1960).
Cancer in Los Angeles County: A Portrait of Incidence and Mortality 1972–1987 (University of Southern California Press, Los Angeles,1991).
Hayes, R.B. et al. Prostate cancer risk in U.S. blacks and whites with a family history of cancer. Int. J. Cancer 60, 361–364 (1995).
Whittemore, A.S. et al. Family history and prostate cancer risk in black, white, and Asian men in the United States and Canada. Am. J. Epidemiol. 141, 732–740 (1995).
Ross, R.K. et al. Does the racial-ethnic variation in prostate cancer risk have a hormonal basis? Cancer 75, 1778–1782 (1995).
Edwards, A. et al. Genetic variation at five trimeric and tetrameric tandem repeat loci in four human population groups. Genomics 12, 241–253 (1992).
Coetzee, G. & Ross, R.K. Prostate cancer and the androgen receptor. J. natn. Cancer Inst. 86, 872–873 (1994).
Irvine, R.A. et al. The CAG and GGC microsatellites of the androgen receptor gene are in linkage disequilibrium in men with prostate cancer. Cancer Res. 55, 1937–1940 (1995).
Carter, B.S. et al. Mendelian inheritance of familial prostate cancer. Proc. natn. Acad. Sci. U.S.A. 89, 3367–3371 (1992).
Breslow, N.E. & Day, N.E. Statistical Methods in Cancer Research, Vol. II, The Design and Analysis of Cohort Studies (IARC Scientific Publications No. 82, International Agency for Research on Cancer, Lyon, 1987).
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Monroe, K., Yu, M., Kolonel, L. et al. Evidence of an X-linked or recessive genetic component to prostate cancer risk. Nat Med 1, 827–829 (1995). https://doi.org/10.1038/nm0895-827
Received:
Accepted:
Issue Date:
DOI: https://doi.org/10.1038/nm0895-827
This article is cited by
-
Increased cancer risk for individuals with a family history of prostate cancer, colorectal cancer, and melanoma and their associated screening recommendations and practices
Cancer Causes & Control (2008)
-
Common sequence variants on 2p15 and Xp11.22 confer susceptibility to prostate cancer
Nature Genetics (2008)
-
Segregation analysis of 1,546 prostate cancer families in Finland shows recessive inheritance
Human Genetics (2007)
-
Prostate cancer incidence and intake of fruits, vegetables and related micronutrients: the multiethnic cohort study* (United States)
Cancer Causes & Control (2006)
-
Genome-wide linkage scan for prostate cancer susceptibility genes in men with aggressive disease: significant evidence for linkage at chromosome 15q12
Human Genetics (2006)