Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

The intrinsic transmission dynamics of tuberculosis epidemics

Abstract

In developed countries the major tuberculosis epidemics declined long before the disease became curable in the 1940s. We present a theoretical framework for assessing the intrinsic transmission dynamics of tuberculosis. We demonstrate that it takes one to several hundred years for a tuberculosis epidemic to rise, fall and reach a stable endemic level. Our results suggest that some of the decline of tuberculosis is simply due to the natural behaviour of an epidemic. Although other factors must also have contributed to the decline, these Causal factors were constrained to operate within the slow response time dictated by the intrinsic dynamics.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1

    Long, E.R. The decline of tuberculosis, with special reference to its generalized form. Bull. Hist. Meet. 8, 819–843 (1940).

    Google Scholar 

  2. 2

    Ransome, A. Researches on Tuberculosis 1–11 (Smith, Elder & Co., London, 1898).

    Google Scholar 

  3. 3

    Grigg, E.R.N. The arcana of tuberculosis: With a brief epidemiologic history of the disease in the USA - Parts I, II & III. Am. Rev. Tuberc. pulm. Dis. 78(2), 151–172, 426–453, 583–603 (1958).

    CAS  Google Scholar 

  4. 4

    Styblo, K. in Advances in Respiratoiy Medicine (eds Flenley, D.C. & Retly, J.L.) 77–108 (Churchill Livingstone, Edinburgh, 1986).

    Google Scholar 

  5. 5

    McKeown, T. & Record, R.G. Reasons for the decline of mortality in England and Wales during the nineteenth century. Population Studies 16, 94–122 (1962).

    Article  Google Scholar 

  6. 6

    Newsholme, A. The Prevention of Tuberculosis 269–276 (Methuen & Co., London, 1908).

    Google Scholar 

  7. 7

    Stead, W.W. Genetics and resistance to tuberculosis: Could resistance be enhanced by genetic engineering?. Ann. intern. Med. 116, 937–941 (1992).

    CAS  Article  Google Scholar 

  8. 8

    Comstock, G.W. Epidemiology of tuberculosis. Am. Rev. respir. Dis. 125(2), 8–16 (1982).

    CAS  PubMed  Google Scholar 

  9. 9

    Lurie, M.B. Resistance to Tuberculosis 30–41 (Harvard Univ. Press, Cambridge, Massachusetts, 1964).

    Google Scholar 

  10. 10

    Nardell, E., McInnis, B., Thomas, B. & Weidhass, S. Exogeneous reinfection with tuberculosis in a shelter for the homeless. New Engl. J. Med. 315, 1570–1575 (1986).

    CAS  Article  Google Scholar 

  11. 11

    Small, P.M. et al. Exogeneous reinfection with multidrug-resistant Mycobacterium tuberculosis in patients with advanced HIV infection. New Engl. J. Med. 328, 1137–1144 (1993).

    CAS  Article  Google Scholar 

  12. 12

    Macdonald, G. The analysis of equilibrium in malaria. Trop. Dis. Bull. 49, 813–829 (1952).

    CAS  PubMed  Google Scholar 

  13. 13

    Anderson, R.M. & May, R.M. Infectious Diseases of Humans: Dynamics & Control 17–19 (Oxford Univ. Press, Oxford, 1991).

    Google Scholar 

  14. 14

    Ryan, F. The Forgotten Plague (Little, Brown & Co., Boston, 1992).

    Google Scholar 

  15. 15

    Comstock, G.W. & Cauthen, G.M. in Tuberculosis: A Comprehensive International Approach (eds Reichman, L.J. & Hershfield, E.S.) 23–47 (Marcel Dekker Inc., New York, 1993).

    Google Scholar 

  16. 16

    Centers for Disease Control. Tuberculosis Statistics in the United States (1990).

  17. 17

    Centers for Disease Control. Tuberculosis Statistics in the United States (1992).

  18. 18

    Small, P.M. et al. The epidemiology of tuberculosis in San Francisco: A population-based study using conventional and molecular methods. New Engl. J. Med. 330, 1703–1709 (1994).

    CAS  Article  Google Scholar 

  19. 19

    Alland, D. et al. Transmission of tuberculosis in New York City: An analysis by DNA fingerprinting and conventional epidemiologic methods. New Engl. J. Med. 330, 1710–1716 (1994).

    CAS  Article  Google Scholar 

  20. 20

    Blower, S.M. & Medley, G., Epidemiology HIV & drugs: Mathematical models & data. Br. J. Addiction 87, 31–39 (1992).

    Article  Google Scholar 

  21. 21

    Blower, S.M. & McLean, A.R. Prophylactic vaccines, risk behavior change and the probability of eradicating HIV in San Francisco. Science 265, 1451–1454 (1994).

    CAS  Article  Google Scholar 

  22. 22

    Waaler, H.T., Geser, A. & Andersen, S. The use of mathematical models in the study of the epidemiology of tuberculosis. Am. J. publ. Health 52, 1002–1013 (1962).

    CAS  Article  Google Scholar 

  23. 23

    Waaler, H.T. Cost-benefit analyses of BCG vaccination under various epidemiological situations. Bull. int. Union Tuberc. 41, 42–52 (1968).

    CAS  PubMed  Google Scholar 

  24. 24

    Waaler, H.T. & Piot, M.A. The use of an epidemiological model for estimating the effectiveness of tuberculosis control measures. Sensitivity of the effectiveness of tuberculosis control measures to the coverage of the population. Bull.World Health Org. 41, 75–93 (1969).

    CAS  PubMed  Google Scholar 

  25. 25

    May, R.M. Population biology of microparasitic infections. in Mathematical Ecology: An Introduction (eds Hallan, T.G. & Levin, S.W.) 405–442 (Springer-Verlag, New York, 1986).

    Chapter  Google Scholar 

  26. 26

    McLean, A.R. & Anderson, R.M. Measles in developing countries. Part I. Epidemiological patterns and parameters. Epidemiol Infect. 100, 111–33 (1988).

    CAS  Article  Google Scholar 

  27. 27

    McLean, A.R. & Anderson, R.M. Measles in developing countries. Part II. The predicted impact of mass vaccination. Epidemiol. Infect. 100, 419–42 (1988).

    CAS  Article  Google Scholar 

  28. 28

    May, R.M. & Anderson, R.M. Parasite-host coevolution. Parasitology 100, S89–S101 (1990).

    Article  Google Scholar 

  29. 29

    Blower, S.M., Hartel, D., Dowlatabadi, H., May, R.M. & Anderson, R.M., Drugs, sex & HIV: A mathematical model for New York City. Phil. Trans. R. Soc. Ser. B 321, 171–187 (1991).

    Google Scholar 

  30. 30

    Blower, S.M. & Dowlatabadi, H. Sensitivity & Uncertainty Analysis of complex models of disease transmission: An HIV model, as an example. Int. Statist. Rev. 62, 229–243 (1994).

    Article  Google Scholar 

  31. 31

    Grzybowski, S. & Enarson, D.A. The fate of cases of pulmonary tuberculosis under various treatment programmes. Bull. int. Union Tuberc. 53, 70–75 (1978).

    CAS  PubMed  Google Scholar 

Download references

Author information

Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Blower, S., Mclean, A., Porco, T. et al. The intrinsic transmission dynamics of tuberculosis epidemics. Nat Med 1, 815–821 (1995). https://doi.org/10.1038/nm0895-815

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing