Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Regulatory T cells and mechanisms of immune system control

Abstract

The immune system evolved to protect the host against the attack of foreign, potentially pathogenic, microorganisms. It does so by recognizing antigens expressed by those microorganisms and mounting an immune response against all cells expressing them, with the ultimate aim of their elimination. Various mechanisms have been reported to control and regulate the immune system to prevent or minimize reactivity to self-antigens or an overexuberant response to a pathogen, both of which can result in damage to the host. Deletion of autoreactive cells during T- and B-cell development allows the immune system to be tolerant of most self-antigens. Peripheral tolerance to self was suggested several years ago to result from the induction of anergy in peripheral self-reactive lymphocytes1. More recently, however, it has become clear that avoidance of damage to the host is also achieved by active suppression mediated by regulatory T (Treg) cell populations2,3,4,5. We discuss here the varied mechanisms used by Treg cells to suppress the immune system.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Layers of regulation of the immune response.

Similar content being viewed by others

References

  1. Jenkins, M.K. et al. Induction and maintenance of anergy in mature T cells. Adv. Exp. Med. Biol. 292, 167–176 (1991).

    Article  CAS  PubMed  Google Scholar 

  2. Sakaguchi, S. et al. Immunologic tolerance maintained by CD25+ CD4+ regulatory T cells: their common role in controlling autoimmunity, tumor immunity, and transplantation tolerance. Immunol. Rev. 182, 18–32 (2001).

    Article  CAS  PubMed  Google Scholar 

  3. Shevach, E.M. CD4+ CD25+ suppressor T cells: more questions than answers. Nat. Rev. Immunol. 2, 389–400 (2002).

    Article  CAS  PubMed  Google Scholar 

  4. Maloy, K.J. & Powrie, F. regulatory T cells in the control of immune pathology. Nat. Immunol. 2, 816–822 (2001).

    Article  CAS  PubMed  Google Scholar 

  5. Cobbold, S.P., Graca, L., Lin, C.Y., Adams, E. & Waldmann, H. regulatory T cells in the induction and maintenance of peripheral transplantation tolerance. Transpl. Int. 16, 66–75 (2003).

    Article  CAS  PubMed  Google Scholar 

  6. Powrie, F., Correa-Oliveira, R., Mauze, S. & Coffman, R.L. Regulatory interactions between CD45RBhigh and CD45RBlow CD4+ T cells are important for the balance between protective and pathogenic cell-mediated immunity. J. Exp. Med. 179, 589–600 (1994).

    Article  CAS  PubMed  Google Scholar 

  7. Annacker, O. et al. CD25+ CD4+ T cells regulate the expansion of peripheral CD4 T cells through the production of IL-10. J. Immunol. 166, 3008–3018 (2001).

    Article  CAS  PubMed  Google Scholar 

  8. Groux, H. et al. A CD4+ T-cell subset inhibits antigen-specific T-cell responses and prevents colitis. Nature 389, 737–742 (1997).

    Article  CAS  PubMed  Google Scholar 

  9. Roncarolo, M.G., Bacchetta, R., Bordignon, C., Narula, S. & Levings, M.K. Type 1 T regulatory cells. Immunol. Rev. 182, 68–79 (2001).

    Article  CAS  PubMed  Google Scholar 

  10. Sundstedt, A., O'Neill, E.J., Nicolson, K.S. & Wraith, D.C. Role for IL-10 in suppression mediated by peptide-induced regulatory T cells in vivo. J. Immunol. 170, 1240–1248 (2003).

    Article  CAS  PubMed  Google Scholar 

  11. Barrat, F.J. et al. In vitro generation of interleukin 10-producing regulatory CD4(+) T cells is induced by immunosuppressive drugs and inhibited by T helper type 1 (Th1)- and Th2-inducing cytokines. J. Exp. Med. 195, 603–616 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Oida, T. et al. CD4+CD25− T cells that express latency-associated peptide on the surface suppress CD4+CD45RBhigh-induced colitis by a TGF-β-dependent mechanism. J. Immunol. 170, 2516–2522 (2003).

    Article  CAS  PubMed  Google Scholar 

  13. Gershon, R.K. A disquisition on suppressor T cells. Transplant. Rev. 26, 170–185 (1975).

    CAS  PubMed  Google Scholar 

  14. Kanof, M.E., Strober, W., Kwan, W.C., O'Connell, N.A. & James, S.P. CD4+ Leu-8+ T cell supernatant activity that inhibits Ig production. J. Immunol. 147, 155–161 (1991).

    CAS  PubMed  Google Scholar 

  15. Shevach, E.M. regulatory T cells in autoimmmunity. Annu. Rev. Immunol. 18, 423–449 (2000).

    Article  CAS  PubMed  Google Scholar 

  16. Shevach, E.M. Suppressor T cells: rebirth, function and homeostasis. Curr. Biol. 10, R572–575 (2000).

    Article  CAS  PubMed  Google Scholar 

  17. Maloy, K.J. et al. CD4+CD25+ T(R) cells suppress innate immune pathology through cytokine-dependent mechanisms. J. Exp. Med. 197, 111–119 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Read, S., Malmstrom, V. & Powrie, F. Cytotoxic T lymphocyte-associated antigen 4 plays an essential role in the function of CD25(+)CD4(+) regulatory cells that control intestinal inflammation. J. Exp. Med. 192, 295–302 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Takahashi, T. et al. Immunologic self-tolerance maintained by CD25(+)CD4(+) regulatory T cells constitutively expressing cytotoxic T lymphocyte-associated antigen 4. J. Exp. Med. 192, 303–310 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Shimizu, J., Yamazaki, S., Takahashi, T., Ishida, Y. & Sakaguchi, S. Stimulation of CD25(+)CD4(+) regulatory T cells through GITR breaks immunological self-tolerance. Nat. Immunol. 3, 135–142 (2002).

    Article  CAS  PubMed  Google Scholar 

  21. McHugh, R.S. et al. CD4(+)CD25(+) immunoregulatory T cells: gene expression analysis reveals a functional role for the glucocorticoid-induced TNF receptor. Immunity 16, 311–323 (2002).

    Article  CAS  PubMed  Google Scholar 

  22. Suri-Payer, E. & Cantor, H. Differential cytokine requirements for regulation of autoimmune gastritis and colitis by CD4(+)CD25(+) T cells. J. Autoimmun. 16, 115–123 (2001).

    Article  CAS  PubMed  Google Scholar 

  23. Hori, S., Nomura, T. & Sakaguchi, S. Control of regulatory T cell development by the transcription factor Foxp3. Science 299, 1057–1061 (2003).

    Article  CAS  PubMed  Google Scholar 

  24. Khattri, R., Cox, T., Yasayko, S.A. & Ramsdell, F. An essential role for Scurfin in CD4+CD25+ T regulatory cells. Nat. Immunol. 4, 337–342 (2003).

    Article  CAS  PubMed  Google Scholar 

  25. Fontenot, J.D., Gavin, M.A. & Rudensky, A.Y. Foxp3 programs the development and function of CD4+CD25+ regulatory T cells. Nat. Immunol. 4, 330–336 (2003).

    Article  CAS  PubMed  Google Scholar 

  26. Ramsdell, F. Foxp3 and natural regulatory T cells: key to a cell lineage? Immunity 19, 165–168 (2003).

    Article  CAS  PubMed  Google Scholar 

  27. O'Garra, A. & Vieira, P. Twenty-first century Foxp3. Nat. Immunol. 4, 304–306 (2003).

    Article  CAS  PubMed  Google Scholar 

  28. Baud, O. et al. Treatment of the immune dysregulation, polyendocrinopathy, enteropathy, X-linked syndrome (IPEX) by allogeneic bone marrow transplantation. N. Engl. J. Med. 344, 1758–1762 (2001).

    Article  CAS  PubMed  Google Scholar 

  29. Chen, W. et al. Conversion of peripheral CD4+CD25− naive T cells to CD4+CD25+ regulatory T cells by TGF-β induction of transcription factor Foxp3. J. Exp. Med. 198, 1875–1886 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Walker, M.R. et al. Induction of FoxP3 and acquisition of T regulatory activity by stimulated human CD4+CD25− T cells. J. Clin. Invest. 112, 1437–1443 (2003).

    Article  CAS  PubMed  Google Scholar 

  31. Apostolou, I. & von Boehmer, H. In vivo instruction of suppressor commitment in naïve T cells. J. Exp. Med. 199, 1401–1408 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Green, E.A., Choi, Y. & Flavell, R.A. Pancreatic lymph node-derived CD4(+)CD25(+) Treg cells: highly potent regulators of diabetes that require TRANCE-RANK signals. Immunity 16, 183–191 (2002).

    CAS  PubMed  Google Scholar 

  33. Salomon, B. et al. B7/CD28 costimulation is essential for the homeostasis of the CD4+CD25+ immunoregulatory T cells that control autoimmune diabetes. Immunity 12, 431–440 (2000).

    Article  CAS  PubMed  Google Scholar 

  34. Hara, M. et al. IL-10 is required for regulatory T cells to mediate tolerance to alloantigens in vivo. J. Immunol. 166, 3789–3796 (2001).

    Article  CAS  PubMed  Google Scholar 

  35. Kingsley, C.I., Karim, M., Bushell, A.R. & Wood, K.J. CD25+CD4+ regulatory T cells prevent graft rejection: CTLA-4- and IL-10-dependent immunoregulation of alloresponses. J. Immunol. 168, 1080–1086 (2002).

    Article  CAS  PubMed  Google Scholar 

  36. Shimizu, J., Yamazaki, S. & Sakaguchi, S. Induction of tumor immunity by removing CD25+CD4+ T cells: a common basis between tumor immunity and autoimmunity. J. Immunol. 163, 5211–5218 (1999).

    CAS  PubMed  Google Scholar 

  37. Golgher, D., Jones, E., Powrie, F., Elliott, T. & Gallimore, A. Depletion of CD25+ regulatory cells uncovers immune responses to shared murine tumor rejection antigens. Eur. J. Immunol. 32, 3267–3275 (2002).

    Article  CAS  PubMed  Google Scholar 

  38. Asseman, C., Mauze, S., Leach, M.W., Coffman, R.L. & Powrie, F. An essential role for interleukin 10 in the function of regulatory T cells that inhibit intestinal inflammation. J. Exp. Med. 190, 995–1004 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Green, E.A., Gorelik, L., McGregor, C.M., Tran, E.H. & Flavell, R.A. CD4+CD25+ T regulatory cells control anti-islet CD8+ T cells through TGF-β-TGF-β receptor interactions in type 1 diabetes. Proc. Natl. Acad. Sci. USA 100, 10878–10883 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Burkhart, C., Liu, G.Y., Anderton, S.M., Metzler, B. & Wraith, D.C. Peptide-induced T cell regulation of experimental autoimmune encephalomyelitis: a role for IL-10. Int. Immunol. 11, 1625–1634 (1999).

    Article  CAS  PubMed  Google Scholar 

  41. Akbari, O. et al. Antigen-specific regulatory T cells develop via the ICOS-ICOS-ligand pathway and inhibit allergen-induced airway hyperreactivity. Nat. Med. 8, 1024–1032 (2002).

    Article  CAS  PubMed  Google Scholar 

  42. Zhang, X. et al. IL-10 is involved in the suppression of experimental autoimmune encephalomyelitis by CD25(+)CD4(+) regulatory T cells. Int. Immunol. 16, 249–256 (2004).

    Article  CAS  PubMed  Google Scholar 

  43. Vieira, P.L. et al. IL-10 secreting regulatory T cells do not express Foxp3 but have comparable regulatory function to naturally occurring CD4+CD25+ regulatory T cells. J. Immunol. 172, 5986–5993 (2004).

    Article  CAS  PubMed  Google Scholar 

  44. Nakamura, K., Kitani, A. & Strober, W. Cell contact-dependent immunosuppression by CD4(+)CD25(+) regulatory T cells is mediated by cell surface-bound transforming growth factor β. J. Exp. Med. 194, 629–644 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Buer, J. et al. Interleukin 10 secretion and impaired effector function of major histocompatibility complex class II-restricted T cells anergized in vivo. J. Exp. Med. 187, 177–183 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Pontoux, C., Banz, A. & Papiernik, M. Natural CD4 CD25(+) regulatory T cells control the burst of superantigen-induced cytokine production: the role of IL-10. Int. Immunol. 14, 233–239 (2002).

    Article  CAS  PubMed  Google Scholar 

  47. Miller, C., Ragheb, J.A. & Schwartz, R.H. Anergy and cytokine-mediated suppression as distinct superantigen-induced tolerance mechanisms in vivo. J. Exp. Med. 190, 53–64 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Pasare, C. & Medzhitov, R. Toll pathway-dependent blockade of CD4+CD25+ T cell-mediated suppression by dendritic cells. Science 299, 1033–1036 (2003).

    Article  CAS  PubMed  Google Scholar 

  49. Moore, K.W., de Waal Malefyt, R., Coffman, R.L. & O'Garra, A. Interleukin-10 and the interleukin-10 receptor. Annu. Rev. Immunol. 19, 683–765 (2001).

    Article  CAS  PubMed  Google Scholar 

  50. Jonuleit, H., Schmitt, E., Schuler, G., Knop, J. & Enk, A.H. Induction of interleukin 10-producing, nonproliferating CD4(+) T cells with regulatory properties by repetitive stimulation with allogeneic immature human dendritic cells. J. Exp. Med. 192, 1213–1222 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Schubert, L.A., Jeffery, E., Zhang, Y., Ramsdell, F. & Ziegler, S.F. Scurfin (FOXP3) acts as a repressor of transcription and regulates T cell activation. J. Biol. Chem. 276, 37672–37679 (2001).

    Article  CAS  PubMed  Google Scholar 

  52. Taams, L.S. et al. Human anergic/suppressive CD4(+)CD25(+) T cells: a highly differentiated and apoptosis-prone population. Eur. J. Immunol. 31, 1122–1131 (2001).

    Article  CAS  PubMed  Google Scholar 

  53. Apostolou, I., Sarukhan, A., Klein, L. & von Boehmer, H. Origin of regulatory T cells with known specificity for antigen. Nat. Immunol. 3, 756–763 (2002).

    Article  CAS  PubMed  Google Scholar 

  54. Walker, L.S., Chodos, A., Eggena, M., Dooms, H. & Abbas, A.K. Antigen-dependent proliferation of CD4+ CD25+ regulatory T cells in vivo. J. Exp. Med. 198, 249–258 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Yamazaki, S. et al. Direct expansion of functional CD25+ CD4+ regulatory T cells by antigen-processing dendritic cells. J. Exp. Med. 198, 235–247 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Barthlott, T., Kassiotis, G. & Stockinger, B. T cell regulation as a side effect of homeostasis and competition. J. Exp. Med. 197, 451–460 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Belkaid, Y., Piccirillo, C.A., Mendez, S., Shevach, E.M. & Sacks, D.L. CD4+CD25+ regulatory T cells control Leishmania major persistence and immunity. Nature 420, 502–507 (2002).

    Article  CAS  PubMed  Google Scholar 

  58. Sher, A. & Coffman, R.L. regulation of immunity to parasites by T cells and T cell-derived cytokines. Annu. Rev. Immunol. 10, 385–409 (1992).

    Article  CAS  PubMed  Google Scholar 

  59. Powrie, F., Carlino, J., Leach, M.W., Mauze, S. & Coffman, R.L. A critical role for transforming growth factor-β but not interleukin 4 in the suppression of T helper type 1-mediated colitis by CD45RB(low) CD4+ T cells. J. Exp. Med. 183, 2669–2674 (1996).

    Article  CAS  PubMed  Google Scholar 

  60. Boussiotis, V.A. et al. IL-10-producing T cells suppress immune responses in anergic tuberculosis patients. J. Clin. Invest. 105, 1317–1325 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Kullberg, M.C. et al. Bacteria-triggered CD4(+) T regulatory cells suppress Helicobacter hepaticus-induced colitis. J. Exp. Med. 196, 505–515 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Trinchieri, G. regulatory role of T cells producing both interferon γ and interleukin 10 in persistent infection. J. Exp. Med. 194, F53–57 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Li, C., Corraliza, I. & Langhorne, J. A defect in interleukin-10 leads to enhanced malarial disease in Plasmodium chabaudi chabaudi infection in mice. Infect. Immun. 67, 4435–4442 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. McGuirk, P., McCann, C. & Mills, K.H. Pathogen-specific T regulatory 1 cells induced in the respiratory tract by a bacterial molecule that stimulates interleukin 10 production by dendritic cells: a novel strategy for evasion of protective T helper type 1 responses by Bordetella pertussis. J. Exp. Med. 195, 221–231 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Sakaguchi, S., Sakaguchi, N., Asano, M., Itoh, M. & Toda, M. Immunologic self-tolerance maintained by activated T cells expressing IL-2 receptor α-chains (CD25). Breakdown of a single mechanism of self-tolerance causes various autoimmune diseases. J. Immunol. 155, 1151–1164 (1995).

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anne O'Garra.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

O'Garra, A., Vieira, P. Regulatory T cells and mechanisms of immune system control. Nat Med 10, 801–805 (2004). https://doi.org/10.1038/nm0804-801

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm0804-801

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing