Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Inhibition of HIV-1 virion production by a transdominant mutant of integrase interactor 1

Abstract

Integase interactor 1 (INI1), also known as hSNF5, is a protein that interacts with HIV-1 integrase. We report here that a cytoplasmically localized fragment of INI1 (S6; aa183–294) containing the minimal integrase-interaction domain potently inhibits HIV-1 particle production and replication. Mutations in S6 or integrase that disrupt integrase–INI1 interaction abrogated the inhibitory effect. An integrase-deficient HIV-1 transcomplemented with integrase fused to Vpr was not affected by S6. INI1 was specifically incorporated into virions and was required for efficient HIV-1 particle production. These results indicate that INI1 is required for late events in the viral life cycle, and that ectopic expression of S6 inhibits HIV-1 replication in a transdominant manner via its specific interaction with integrase within the context of Gag–Pol, providing a novel strategy to control HIV-1 replication.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: S6 inhibits HIV-1 particle production and replication.
Figure 2: Interaction-defective mutants of S6 abrogate the inhibitory effect on viral particle production.
Figure 3: INI1-interaction–defective mutation in integrase abrogates the inhibitory effect of S6.
Figure 4: Sub-cellular localization of INI1 and the truncation mutants S6 and E3.
Figure 5: INI1 is required for efficient particle production and is encapsulated in virions.

Similar content being viewed by others

References

  1. Pani, A. & Marongiu, M.E. Anti-HIV-1 integrase drugs: How far from the shelf? Curr. Pharm. Des. 6, 569–584 (2000).

    Article  CAS  Google Scholar 

  2. Pommier, Y. & Neamati, N. Inhibitors of human immunodeficiency virus integrase. Adv. Virus Res. 52, 427–458 (1999).

    Article  CAS  Google Scholar 

  3. Mathe, C. & Nair, V. Potential inhibitors of HIV integrase. Nucleosides Nucleotides 18, 681–682 (1999).

    Article  CAS  Google Scholar 

  4. Asante-Appiah, E. & Skalka, A.M. Molecular mechanisms of retroviral DNA integration. Antiviral Res. 36, 139–156 (1997).

    Article  CAS  Google Scholar 

  5. Brown, P.O. Integration of retroviral DNA. Curr. Topics Microbiol. Immunol. 157, 19–48 (1990).

    CAS  Google Scholar 

  6. Desrosiers, R.C. Strategies used by human immunodeficiency virus that allow persistent viral replication. Nature Med. 5, 723–725 (1999).

    Article  CAS  Google Scholar 

  7. Brown, P. Integration. in Retroviruses (eds. Coffin, J.M., Hughes, S.H. & Varmus, H.E.) 161–203 (Cold Spring harbor Laboratory Press, Cold Spring Harbor, New York, 1997).

    Google Scholar 

  8. Engleman, A., Englund, G., Orenstein, J.M., Martin, M.A. & Craigie, R. Multiple effects of mutations in human immunodeficiency virus type 1 integrase on viral replication. J. Virol. 69, 2729–2736 (1995).

    Google Scholar 

  9. Masuda, T., Planelles, V., Krogstad, P. & Chen, I.S.Y. Genetic analysis of human immunodeficiency virus type 1 integrase and the U3 att site: Unusual phenotype of mutants in the zinc finger-like domain. J. Virol. 69, 6687–6696 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Wu, X. et al. Human immunodeficiency virus type 1 integrase protein promotes reverse transcription through specific interactions with the nucleoprotein reverse transcription complex. J. Virol. 73, 2126–2135 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Leavitt, A.D., Robles, G., Alesandro, N. & Varmus, H.E. Human immunodeficiency virus type 1 integrase mutants retain in vitro integrase activity yet fail to integrase viral DNA efficiently during infection. J. Virol. 70, 721–728 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Nakamura, T. et al. Lack of infectivity of HIV-1 integrase zinc finger-like domain mutant with morphologically normal maturation. Biochem. Biophys. Res. Commun. 239, 715–722 (1997).

    Article  CAS  Google Scholar 

  13. Kalpana, G.V., Marmon, S., Wang, W., Crabtree, G.R. & Goff, S.P. Binding and stimulation of HIV-1 integrase by a human homolog of yeast transcription factor SNF5. Science 266, 2002–2006 (1994).

    Article  CAS  Google Scholar 

  14. Morozov, A., Yung, E. & Kalpana, G. Structure-function analysis of integrase interactor 1L1 reveals differential properties of two repeat motifs present in the highly conserved region. Proc. Natl. Acad. Sci. USA 95, 1120–1125 (1998).

    Article  CAS  Google Scholar 

  15. Versteege, I. et al. Truncating mutations of hSNF5/INI1 in aggressive paediatric cancer. Nature 394, 203–206 (1998).

    Article  CAS  Google Scholar 

  16. Biegel, J.A. et al. Germ-line and acquired mutations of INI1 in atypical teratoid and rhabdoid tumors. Cancer Res. 59, 74–79 (1999).

    CAS  PubMed  Google Scholar 

  17. Wang, W. et al. Purification and biochemical heterogeneity of the mammalian SWI-SNF complex. EMBO J. 15, 5370–82 (1996).

    Article  CAS  Google Scholar 

  18. Kingston, R.E. & Narlikar, G.J. ATP-dependent remodeling and acetylation as regulators of chromatin fluidity. Genes Dev. 13, 2339–52 (1999).

    Article  CAS  Google Scholar 

  19. Naldini, L. et al. In vivo gene delivery and stable transduction of nondividing cells by a lentiviral vector. Science 272, 263–267 (1996).

    Article  CAS  Google Scholar 

  20. Leung, D.W., Chen, E. & Goeddel, D.V. A method for random mutagenesis of a defined DNA segment using a modified polymerase chain reaction. Techique 1, 11–15 (1989).

    Google Scholar 

  21. Wu, X. et al. Functional RT and integrase incorporated into HIV-1 particles independently of the Gag/Pol precursor protein. EMBO J. 16, 5113–22 (1997).

    Article  CAS  Google Scholar 

  22. Adachi, A. et al. Generation and characterization of human immunodeficiency virus type 1 mutants. Arch. Virol. 117, 45–58 (1991).

    Article  CAS  Google Scholar 

  23. Ansari-Lari, M.A., Donehower, L.A. & Gibbs, R.A. Analysis of human immunodeficiency virus type 1 integrase mutants. Virol. 211, 332–335 (1995).

    Article  CAS  Google Scholar 

  24. Cannon, P.M., Wilson, M., Byles, E., Kingsman, S.M. & Kingsman, A.J. Human immunodeficiency virus type 1 integrase: Effect on viral replication of mutations at highly conserved residues. J. Virol. 68, 4768–4775 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Gallay, P., Swingler, S., Song, J., Bushman, F. & Trono, D. HIV nuclear import is governed by the phosphotyrosine-mediated binding of matrix to the core domain of integrase. Cell 83, 569–576 (1995).

    Article  CAS  Google Scholar 

  26. Stevenson, M., Stanwick, T.L., Dempsey, M.P. & Lamonica, C.A. HIV-1 replication is controlled at the level of T cell activation and proviral integration. EMBO J. 9, 1551–1560 (1990).

    Article  CAS  Google Scholar 

  27. Wiskerchen, M. & Muesing, M.A. Human immunodeficiency virus type 1 integrase: Effects of mutations on viral ability to integrate, direct viral gene expression from unintegrated viral DNA templates, and sustain viral propagation in primary cells. J. Virol. 69, 376–386 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Fletcher, T.M., 3rd et al. Complementation of integrase function in HIV-1 virions. EMBO J. 16, 5123–38 (1997).

    Article  CAS  Google Scholar 

  29. Muchardt, C., Sardet, C., Bourachot, B., Onufryk, C. & Yaniv, M. A human protein with homology to Saccharomyces cerevisiae SNF5 interacts with the potential helicase hbrm. Nucleic Acids Res. 23, 1127–32 (1995).

    Article  CAS  Google Scholar 

  30. Ott, D.E. et al. Cytoskeletal proteins inside human immunodeficiency virus type 1 virions. J. Virol. 70, 7734–7743 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Bukovsky, A. & Gottlinger, H. Lack of integrase can markedly affect human immunodeficiency virus type 1 particle production in the presence of an active viral protease. J. Virol. 70, 6820–6825 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Swanstrom, R. & Wills, J.W. Synthesis, assembly, and processing of viral proteins. in Retroviruses (eds. Coffin, J.M., Hughes, S.H. & Varmus, H.E.) 263–334 (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, 1997).

    Google Scholar 

  33. Cheng, S.-W. G. et al. c-MYC interacts with INII/hSNF5 and requires the SWI/SNF complex for transactivation function. Nature Gen. 22, 102–105 (1999).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank V.R. Prasad and J. Brojatsch for critically reading the manuscript; R. Kim, R. Beltran, S-W. G. Cheng and P. Joshi for technical help; D. Helland and D. Trono for reagents; S. Goff for helpful discussions; and A. Rubinstein, Y. Mizrachi, M. Mantovani, G. Liu and N. Sokolov for assistance with the p24 ELISA assays. This work was funded by a NIH grant AI/GM 399951 to G.V.K. and a contract NOI-CO-56000 to D.O. M.S. and A.P. were funded by an institutional training grant T32-AI07501

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ganjam V. Kalpana.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yung, E., Sorin, M., Pal, A. et al. Inhibition of HIV-1 virion production by a transdominant mutant of integrase interactor 1. Nat Med 7, 920–926 (2001). https://doi.org/10.1038/90959

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/90959

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing