Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Cloning of mammalian heparanase, an important enzyme in tumor invasion and metastasis

Abstract

The endoglycosidase heparanase is an important in the degradation of the extracellular matrix by invading cells, notably metastatic tumor cells and migrating leukocytes. Here we report the cDNA sequence of the human platelet enzyme, which encodes a unique protein of 543 amino acids, and the identification of highly homologous sequences in activated mouse T cells and in a highly metastatic rat adenocarcinoma. Furthermore, the expression of heparanase mRNA in rat tumor cells correlates with their metastatic potential. Exhaustive studies have shown only one heparanase sequence, consistent with the idea that this enzyme is the dominant endoglucuronidase in mammalian tissues.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Nucleotide and deduced amino-acid sequence of human platelet heparanase.
Figure 2: Amino-acid alignment of human, rat and mouse heparanase.
Figure 3: Tissue specificity of human heparanase mRNA.
Figure 4: Genomic Southern blot analysis of the human heparanase gene.
Figure 5: Expression of human heparanase.
Figure 6: Expression of heparanase mRNA in rat metastatic and non metastatic tumor cell lines.

Similar content being viewed by others

References

  1. Dietrich, C.P., Nader, H.B. & Strauss, A.J. Structural differences of heparan sulfates according to the tissue and species of origin. Biochem. Biophys. Res. Comm. 111, 865–871 (1983).

    Article  CAS  Google Scholar 

  2. Kjellen, L. & Lindahl, U. Proteoglycans: structures and interactions. Annu. Rev. Biochem. 60, 443– 475 (1991).

    Article  CAS  Google Scholar 

  3. Nakajima, M., Irimura, T., Di Ferrante, N. & Nicolson, G. L. Metastatic melanoma cell heparanase. Characterization of heparan sulfate degradation fragments produced by B16 melanoma endoglucuronidase. J. Biol. Chem. 259, 2283–2290 (1984).

    CAS  PubMed  Google Scholar 

  4. Oosta, G. M., Favreau, L. V., Beeler, D. L. & Rosenberg, R. D. Purification and properties of human platelet heparitinase. J. Biol. Chem. 257, 11249–11255 (1982).

    CAS  PubMed  Google Scholar 

  5. Hoogewerf, A. J. et al. CXC chemokines connective tissue activating peptide-III and neutrophil activating peptide-2 are heparin/heparan sulfate-degrading enzymes. J. Biol. Chem. 270, 3268– 3277 (1995).

    Article  CAS  Google Scholar 

  6. Freeman, C. & Parish, C. R. Human platelet heparanase: purification, characterization and catalytic activity. Biochem. J. 330, 1341–1350 (1998).

    Article  CAS  Google Scholar 

  7. Matzner, Y. et al. Degradation of heparan sulfate in the subendothelial extracellular matrix by a readily released heparanase from human neutrophils. Possible role ininvasion through basement membranes. J. Clin. Invest. 76, 1306–1313 (1985).

    Article  CAS  Google Scholar 

  8. Sewell, R. F., Brenchley, P. E. G. & Mallick, N. P. Human mononuclear cells contain an endoglycosidase specific for heparan sulphate glycosaminoglycan demonstrable with the use of a specific solid-phase metabolically radiolabelled substrate. Biochem. J. 264, 777–783 (1989).

    Article  CAS  Google Scholar 

  9. Naparstek, Y., Cohen, I. R., Fuks, Z. & Vlodavsky, I. Activated T lymphocytes produce a matrix-degrading heparan sulphate endoglycosidase. Nature 310, 241–243 (1984).

    Article  CAS  Google Scholar 

  10. Bartlett, M. R., Underwood, P. A. & Parish, C. R. Comparative analysis of the ability of leucocytes, endothelial cells and platelets to degrade the subendothelial basement membrane: evidence for cytokine dependence and detection of a novel sulfatase. Immunol. Cell Biol. 73, 113–124 (1995).

    Article  CAS  Google Scholar 

  11. Godder, K. et al. Heparanase activity in cultured endothelial cells. J. Cell. Physiol. 148, 274–280 (1991).

    Article  CAS  Google Scholar 

  12. Freeman, C. & Parish, C.R. A rapid quantitative assay for the detection of mammalian heparanase activity. Biochem. J. 325, 229–237 (1997).

    Article  CAS  Google Scholar 

  13. Yurchenco, P.D. & Schittny, J.C. Molecular architecture of basement membranes. FASEB J. 4, 1577– 1590 (1990).

    Article  CAS  Google Scholar 

  14. Vlodavsky, I. et al. Expression of heparanase by platelets and circulating cells of the immune system: possible involvement in diapedesis and extravasation. Invasion Metastasis 12, 112– 127 (1992).

    CAS  PubMed  Google Scholar 

  15. Bar-Ner, M., Mayer, M., Schirrmacher, V. & Vlodavsky, I. Involvement of both heparanase and plasminogen activator in lymphoma cell-mediated degradation of heparan sulfate in the the subendothelial extracellular matrix. J. Cell Biol. 128, 299– 306 (1986).

    CAS  Google Scholar 

  16. Nakajima, M., Irimura, T., Di Ferrante, D., Di Ferrante, N. & Nicolson, G. L. Heparan sulfate degradation: relation to tumor invasive and metastatic properties of mouse B16 melanoma sublines. Science 220, 611– 613 (1983).

    Article  CAS  Google Scholar 

  17. Taipale, J. & Keski-Oji, J. Growth factors in the extracellular matrix FASEB. J. 11, 51– 59 (1997).

    Article  CAS  Google Scholar 

  18. Ishai-Michaeli, R., Eldor, A. & Vlodavsky, I. Heparanase activity expressed by platelets, neutrophils, and lymphoma cells releases active fibroblast growth factor from extracellular matrix. Cell Regul. 1, 833– 842 (1990).

    Article  CAS  Google Scholar 

  19. Rapraeger, A. C., Krufka, A. & Olwin, B. B. Requirement of heparan sulfate for bFGF-mediated fibroblast growth and myoblast differentiation. Science 252, 1705–1708 (1991).

    Article  CAS  Google Scholar 

  20. Campbell, J. H., Rennick, R. E., Kalevitch, S. G. & Campbell, G. R. Heparan sulfate-degrading enzymes induce modulation of smooth muscle phenotype. Exp. Cell Res. 200, 156– 167 (1992).

    Article  CAS  Google Scholar 

  21. Goshen, R. et al. Purification and characterization of placental heparanase and its expression by cultured cytotrophoblasts. Mol. Hum. Reprod. 2, 679–684 (1996).

    Article  CAS  Google Scholar 

  22. Pikas, D. S., Li, J. P., Vlodavsky, I. & Lindahl, U. Substrate specificity of heparanases from human hepatoma and platelets. J. Biol. Chem. 273, 18770–18777 (1998).

    Article  CAS  Google Scholar 

  23. De Vouge, M.W. et al. Immunoselection of grp94/endoplasmin from a KNRK cell-specific lgt11 library using antibodies directed against a putative heparanase amino-terminal peptide. Int. J. Cancer 56, 286– 294 (1994).

    Article  CAS  Google Scholar 

  24. Graham, L. Tumor rejection antigens of the hsp90 family (gp96) closely resemble tumor-associated heparanase enzymes. Biochem J. 301, 917– 918 (1994).

    Article  CAS  Google Scholar 

  25. Rechter, M. et al. A cellulose-binding domain fused recombinant human T cell connective tissue activating peptide-III manifests heparanase activity. Biochem. Biophys. Res. Comm. 255, 657– 662 (1999).

    Article  CAS  Google Scholar 

  26. Gonzalez-Stawinska, G.V., Parker, W., Holzknecht, Z.E., Huber, N. & Platt, J.L. Partial sequence of human platelet heparitinase and evidence of its ability to polymerize. Biochim. Biophys. Acta 1429, 431–438 (1999).

    Article  Google Scholar 

  27. Laskov, R., Michaeli, R.I., Sharir, H., Yefenof, E. & Vlodavsky, I. Production of heparanase by normal and neoplastic murine B-lymphocytes. Int. J. Cancer 47, 92–98 (1991).

    Article  CAS  Google Scholar 

  28. Nakajima, M., Irimura, T. & Nicolson, G. L. Heparanases and tumor metastasis. J. Cell. Biochem. 36, 157–167 (1988).

    Article  CAS  Google Scholar 

  29. Ricoveri, W. & Cappelletti, R. Heparan sulfate endoglycosidase and metastatic potential in murine fibrosarcoma and melanoma. Cancer Res. 46, 3855–3861 (1986).

    CAS  PubMed  Google Scholar 

  30. Godavarti, R. & Sasisekharan, R. A. Comparative analysis of the primary sequences and characteristics of heparinases I, II, and III from Flavobacterium heparinum. Biochem. Biophys. Res. Comm. 229, 770–770 (1996).

    Article  CAS  Google Scholar 

  31. Desai, U. R., Wang, H-M. & Linhardt, R. J. Substrate specificity of the heparin lyases from Flavobacterium heparinum. Arch. Biochem. Biophys. 306, 461–468 (1993).

    Article  CAS  Google Scholar 

  32. Ernst, S., Langer, R., Cooney, C. L. & Sasisekharan, R. Enzymatic degradation of glycosaminoglycans. Crit. Rev. Biochem. Mol. Biol. 30, 387–444 (1995).

    Article  CAS  Google Scholar 

  33. Parish, C.R. et al. Treatment of central nervous system inflammation with inhibitors of basement membrane degradation. Immunol. Cell Biol. 76, 104–113 (1998).

    Article  CAS  Google Scholar 

  34. Willenborg, D.O. & Parish, C.R. Inhibition of allergic encephalomyelitis in rats by treatment with sulfated polysaccharides. J. Immunol. 140, 3401– 3405 (1988).

    CAS  PubMed  Google Scholar 

  35. Vlodavsky, I. et al. Inhibition of tumor metastasis by heparanase inhibiting species of heparin. Invasion Metastasis 14, 290– 302 (1994-95).

  36. Hershkoviz, R., Mor, F., Miao, H.Q., Vlodavsky, I. & Lider, O. Differential effects of polysulfated polysaccharide on experimental encephalomyelitis, proliferation of autoimmune T cells, and inhibition of heparanase activity. J. Autoimmun. 8, 741–750 (1995).

    Article  CAS  Google Scholar 

  37. Parish, C.R., Freeman, C., Brown, K.J., Francis, D.J. & Cowden, W.B. Identification of sulfated oligosaccharide-based inhibitors of tumor growth and metastasis using novel in vitro assays for angiogenesis and heparanase activity. Cancer Res. submitted. (1999).

  38. Lider, O. et al. Suppression of experimental autoimmune diseases and prolongation of allograft survival by treatment of animals with low doses of heparins. J. Clin. Invest. 83, 752– 756 (1989).

    Article  CAS  Google Scholar 

  39. Hellman, U., Wernstedt, C., Gonez, J. & Heldin, C.H. Improvement of an "In-Gel" digestion procedure for the micropreparation of internal protein fragments for amino acid sequencing. Anal. Biochem. 224, 451–455 (1995).

    Article  CAS  Google Scholar 

  40. Messer, M., Griffiths, M., Rismiller, P.D. & Shaw, D.C. Lactose synthesis in a monotreme, the echidna (Tachyglossus aculeatus): isolation and amino acid sequence of echidna alpha-lactalbumin. Comp. Biochem. Physiol. B Biochem. Mol. Biol. 118, 403– 410 (1997).

    Article  CAS  Google Scholar 

  41. Sambrook, J., Fritsch, E.F. & Maniatis T. Molecular cloning. A laboratory manual 2nd ed. (Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, 1989).

    Google Scholar 

  42. Parish, C.R., Jakobsen, K.B. & Coombe, D.R. A basement-membrane permeability assay which correlates with the metastatic potential of tumor cells. Int. J. Cancer 52, 378–383 (1992).

    Article  CAS  Google Scholar 

  43. Horton, R. M., Hunt, H. D., Ho, S. N., Pullen, J. K. & Pease, L. R. Engineering hybrid genes without the use of restriction enzymes: gene splicing by overlap extension. Gene 77, 61–68 (1989).

    Article  CAS  Google Scholar 

  44. Seed, B. & Aruffo, A. Molecular cloning of the CD2 antigen, the T-cell erythrocyte receptor, by a rapid immunoselective procedure. Proc. Natl. Acad. Sci. USA 84, 3365– 3369 (1987).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank A. Browne, K. Jakobson and E. Pagler for technical assistance and P. Milburn for the amino-acid sequencing. This research was funded by Progen Industries, Brisbane, Australia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher R. Parish.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hulett, M., Freeman, C., Hamdorf, B. et al. Cloning of mammalian heparanase, an important enzyme in tumor invasion and metastasis. Nat Med 5, 803–809 (1999). https://doi.org/10.1038/10525

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/10525

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing