Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Implantation of stimulated homologous macrophages results in partial recovery of paraplegic rats

Abstract

Postinjury recovery in most tissues requires an effective dialog with macrophages; however, in the mammalian central nervous system, this dialog may be restricted (possibly due to its immune-privileged status), which probably contributes to its regeneration failure. We circumvented this by implanting macrophages, pre-exposed ex vivo to peripheral nerve segments, into transected rat spinal cord. This stimulated tissue repair and partial recovery of motor function, manifested behaviorally by movement of hind limbs, plantar placement of the paws and weight support, and electrophysiologically by cortically evoked hind-limb muscle response. We substantiated these findings immunohistochemically by demonstrating continuity of labeled nerve fibers across the transected site, and by tracing descending fibers distally to it by anterograde labeling. In recovered rats, re-transection of the cord above the primary transection site led to loss of recovery, indicating the involvement of long descending spinal tracts. Injection of macrophages into the site of injury is relatively non-invasive and, as the cells are autologous, it may be developed into a clinical therapy.

Your institute does not have access to this article

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

References

  1. Schwartz, M., Cohen, A., Stein-Izsak, C. & Belkin, M. Dichotomy of the glial cell response to axonal injury and regeneration FASEB J. 3, 2371–2378 (1989).

    CAS  Article  Google Scholar 

  2. Aguayo, A.J., David, S. & Bray, G.M. Influences of the glial environment on the elongation of axons after injury: transplantation studies in adult rodents. J. Exp. Biol. 95, 231–240 (1981).

    CAS  PubMed  Google Scholar 

  3. Schnell, L. & Schwab, M.E. Sprouting and regeneration of lesioned corticospinal tract fibres in the adult rat spinal cord. Eur. J. Neurosci. 5, 1156–1171 (1993).

    CAS  Article  Google Scholar 

  4. Cheng, H., Cao, Y. & Olson, L. Spinal cord repair in adult paraplegic rats: partial restoration of hind limb function. Science 273, 510–513 (1996).

    CAS  Article  Google Scholar 

  5. Chen, D.F., Jhaveri, S. & Schneider, G.E. Intrinsic changes in developing retinal neurons result in regenerative failure of their axons. Proc. Natl. Acad. Sci. USA 92, 7287–7291 (1995).

    CAS  Article  Google Scholar 

  6. Grill, R., Murai, K., Blesch, A., Gage, F.H. & Tuszynski, M.H. Cellular delivery of neurotrophin-3 promotes corticospinal axonal regrowth and partial functional recovery after spinal cord injury. J. Neurosci. 17, 5560–5572 (1997).

    CAS  Article  Google Scholar 

  7. Harel, A. et al. Optic nerve regeneration in adult fish and apolipoprotein A-1. J. Neurochem. 52, 1218–1228 (1989).

    CAS  Article  Google Scholar 

  8. Eitan, S. et al. Identification of an interleukin 2-like substance as a factor cytotoxic to oligodendrocytes and associated with central nervous system regeneration. Proc. Natl. Acad. Sci. USA 89, 5442–5446 (1992).

    CAS  Article  Google Scholar 

  9. Eitan, S. & Schwartz, M. A transglutaminase that converts interleukin-2 into a factor cytotoxic to oligodendrocytes. Science 261, 106–108 (1993).

    CAS  Article  Google Scholar 

  10. Eitan, S. et al. Recovery of visual response of injured adult rat optic nerves treated with transglutaminase. Science 264, 1764–1768 (1994).

    Google Scholar 

  11. Faber-Elman, A., Lavie, V., Schvartz, I., Shaltiel, S. & Schwartz, M. Vitronectin overrides a negative effect of TNF-alpha on astrocyte migration. FASEB J. 9, 1605–1613 (1995).

    CAS  Article  Google Scholar 

  12. Faber-Elman, A., Solomon, A., Abraham, J.A., Marikovsky, M. & Schwartz, M. Involvement of wound-associated factors in rat brain astrocyte migratory response to axonal injury: in vitro simulation. J. Clin. Invest. 97, 162–171 (1996).

    CAS  Article  Google Scholar 

  13. Lazarov-Spiegler, O., Solomon, A.S., Hirschberg, D.L., Lavie, V. & Schwartz, M. Transplantation of activated macrophages overcomes central nervous system regrowth failure. FASEB J. 10, 1296–1302 (1996).

    CAS  Article  Google Scholar 

  14. Hirschberg, D.L. & Schwartz, M. Macrophage recruitment to acutely injured central nervous system is inhibited by a resident factor: a basis for an immune-brain barrier. J. Neuroimmunol. 61, 89–96 (1995).

    CAS  Article  Google Scholar 

  15. Lotan, M. & Schwartz, M. Cross talk between the immune system and the nervous system in response to injury: implications for regeneration. FASEB J. 8, 1026–1033 (1994).

    CAS  Article  Google Scholar 

  16. Perry, V.H., Brown, M.C. & Gordon, S. The macrophage response to central and peripheral nerve injury. A possible role for macrophages in regeneration. J. Exp. Med. 165, 1218–1223 (1987).

    CAS  Article  Google Scholar 

  17. George, R. & Griffin, J.W. Delayed macrophage responses and myelin clearance during Wallerian degeneration in the central nervous system: the dorsal radiculotomy model. Exp. Neurol. 129, 225–236 (1994).

    CAS  Article  Google Scholar 

  18. Streilein, J.W. Tissue barriers, immunosuppressive microenvironments and privileged sites: the eye's point of view. Reg. Immunol. 5, 253–268 (1993).

    CAS  PubMed  Google Scholar 

  19. Schwartz, M., Hirschberg, D.L. & Beserman, P. Central nervous system regeneration and the immune system. Mol. Med. Today 1, 60–61 (1995).

    CAS  Article  Google Scholar 

  20. Lazarov-Spiegler, O., Rapalino, O., Agranov, G. & Schwartz, M. Restricted inflammatory reaction in the CNS: a key impediment to regeneration. Mol. Med. Today, (in the press).

  21. Basso, D.M. et al. MASCIS evaluation of open field locomotor scores: effects of experience and teamwork on reliability. Multicenter animal spinal cord injury study. J. Neurotrauma 13, 343–359, (1996).

    CAS  Article  Google Scholar 

  22. Basso, D.M., Beattie, M.S. & Bresnahan, J.C. A sensitive and reliable locomotor rating scale for open field testing in rats. J. Neurotrauma 12, 1–21 (1995).

    CAS  Article  Google Scholar 

  23. Basso, D.M., Beattie, M.S. & Bresnahan, J.C. Graded histological and locomotor outcomes after spinal cord contusion using the NYU weight-drop device versus transection. Exp. Neurol. 139, 244–256 (1996).

    CAS  Article  Google Scholar 

  24. Brooks, C.M. & Peck, M.E. Effect of various cortical lesions on development of placing and hopping reactions in rats. J. Neurophysiol. 3, 66–73 (1940).

    Article  Google Scholar 

  25. Goldberger, M.E., Bregman, B.S., Vierck, C.J. Jr., & Brown, M. Criteria for assessing recovery of function after spinal cord injury: behavioral methods. Exp. Neurol. 107, 113–117 (1990).

    CAS  Article  Google Scholar 

  26. Kalderon, N. & Fuks, Z. Severed corticospinal axons recover electrophysiologic control of muscle activity after x-ray therapy in lesioned adult spinal cord. Proc. Natl. Acad. Sci. USA 93, 11185–11190 (1996).

    CAS  Article  Google Scholar 

  27. Konrad, P.E. & Tacker, W.A. Jr., Suprathreshold brain stimulation activates non-corticospinal motor evoked potentials in cats. Brain Res. 522, 14–29 (1990).

    CAS  Article  Google Scholar 

  28. Levy, W.J., McCaffrey, M., York, D.H. & Tanzer, F., Motor evoked potentials from transcranial stimulation of the motor cortex in cats. Neurosurgery 15, 214–227 (1984).

    CAS  Article  Google Scholar 

  29. Nashmi, R., Imamura, H., Tator, C.H. & Fehlings, M.G. Serial recording of somatosensory and myoelectric motor evoked potentials: role in assessing functional recovery after graded spinal cord injury the rat. J. Neurotrauma 14, 151–159, 1997.

    CAS  Article  Google Scholar 

  30. Blaugrund, E. et al. Axonal regeneration is associated with glial migration: comparison between the injured optic nerves of fish and rats. J. Comp. Neurol. 330, 105–112 (1993).

    CAS  Article  Google Scholar 

  31. Young, W. Spinal cord regeneration. Science 273, 451 (1996).

    CAS  Article  Google Scholar 

  32. Ben Zeev-Brann, A., Lazarov-Spiegler, O., Brenner, T. & Schwartz, M. Differential effects of central and peripheral nerves on macrophages and microglia. Glia, (in the press).

  33. Lazarov-Spiegler, O., Solomon, A.S. & Schwartz, M. Peripheral nerve-stimulated macrophages simulate a peripheral nerve-like regenerative response in rat transected optnerve. Glia, (in the press).

  34. Schwab, M.E. & Thoenen, H. Dissociated neurons regenerate into sciatic but not optic nerve explants in culture irrespective of neurotrophic factors. J. Neurosci. 5, 2415–2423 (1985).

    CAS  Article  Google Scholar 

  35. Davies, S.J., Fitch, M.T., Memberg, S.P., Hall, A.K., Raisman, G. & Silver, J. Regeneration of adult axons in white matter tracts of the central nervous system. Nature 390, 680–683 (1997).

    CAS  Article  Google Scholar 

  36. Schwab, M.E. & Bartholdi, D. Degeneration and regeneration of axons in the lesioned spinal cord. Physiol. Rev. 76, 319–370 (1996).

    CAS  Article  Google Scholar 

  37. Hikawa, N. & Takenaka, T. Myelin-stimulated macrophages release neurotrophic factors for adult dorsal root ganglion neurons in culture. Cell. Mol. Neurobiol. 16, 517–528 (1996).

    CAS  Article  Google Scholar 

  38. Harel, A., Fainaru, M., Rubinstein, M., Tal, N. & Schwartz, M. Fish apolipoprotein-A-I has heparin binding activity; implication for nerve regeneration. J. Neurochem. 55, 1237–1243 (1990).

    CAS  Article  Google Scholar 

  39. Ignatius, M.J. et al. Expression of apolipoprotein E during nerve degeneration and regeneration. Proc. Natl. Acad. Sci. USA 83, 1125–1129 (1986).

    CAS  Article  Google Scholar 

  40. Bisby, M.A. & Chen, S., Wallerian degeneration in sciatic nerves of C57BL/Ola mice is associated with impaired regeneration of sensory axons. Brain Res. 530, 117–120 (1990).

    CAS  Article  Google Scholar 

  41. Heumann, R. et al. Differential regulation of mRNA encoding nerve growth factor and its receptor in rat sciatic nerve during development, degeneration, and regeneration: role of macrophages. Proc. Natl. Acad. Sci. USA 84, 8735–8739 (1987).

    CAS  Article  Google Scholar 

  42. Stoll, G., Griffin, J.W., Li, C.Y. & Trapp, B.D. Wallerian degeneration in the peripheral nervous system: participation of both Schwann cells and macrophages in myelin degradation. J. Neurocytol. 18, 671–683 (1989).

    CAS  Article  Google Scholar 

  43. Xu, X.M., Chen, A., Guenard, V., Kleitman, N. & Bunge, M.B., Schwann cell transplants promote axonal regeneration from both the rostral and caudal stumps of transected adult rat spinal cord. J. Neurocytol. 26, 1–16 (1997).

    CAS  Article  Google Scholar 

  44. Lazarov-Spiegler, O., Solomon, A.S. & Schwartz, M. The inflammatory reaction is an essential process for adult mammalian CNS regrowth. Vision Res. (in the press).

  45. Bregman, B.S. et al. Recovery from spinal cord injury mediated by antibodies to neurite growth inhibitors. Nature 378, 498–501 (1995).

    CAS  Article  Google Scholar 

  46. Richardson, P.M., McGuinness, U.M. & Aguayo, A.J. Axons from CNS neurons regenerate into PNS grafts. Nature 284, 264–265 (1980).

    CAS  Article  Google Scholar 

  47. Ye, J.H. & Houle, J.D. Treatment of the chronically injured spinal cord with neurotrophic factors can promote axonal regeneration from supraspinal neurons. Exp. Neurol. 143, 70–81 (1997).

    CAS  Article  Google Scholar 

  48. Rabchevsky, A.G. & Streit, W.J. Grafting of cultured microglial cells into the lesioned spinal cord of adult rats enhances neurite outgrowth. J. Neurosci. Res. 47, 34–48 (1997).

    CAS  Article  Google Scholar 

  49. Gale, K., Kerasidis, H. & Wrathall, J.R. Spinal cord contusion in the rat: behavioral analysis of functional neurologic impairment. Exp Neurol. 88, 123–134 (1985).

    CAS  Article  Google Scholar 

  50. Kerasidis, H., Wrathall, J.R. & Gale, K. Behavioral assessment of fundamental deficit in rats with contusive spinal cord injury. J. Neurosci. Methods 20, 167–179 (1987).

    CAS  Article  Google Scholar 

  51. Simpson, R.K. & Baskin, D.S. Corticomotor evoked potentials in acute and chronic blunt spinal cord injury in the rat: correlation with neurological outcome and histological damage. Neurosurgery 20, 131–137 (1987).

    CAS  Article  Google Scholar 

  52. Gruner, J.A., Wade, C.K., Menna, G. & Stokes, B.T. Myoelectric evoked potentials versus locomotor recovery in chronic spinal cord injured rats. J. Neurotrauma. 10, 327–347 (1993).

    CAS  Article  Google Scholar 

  53. Mediratta, N.K. & Nicoll, J.A. Conduction velocities of corticospinal axons in the rat studied by recording cortical antidromic responses. J. Physiol. Lond. 336, 545–561 (1983).

    CAS  Article  Google Scholar 

  54. Nance, D.M. & Burns, J. Fluorescent dextrans as sensitive anterograde neuroanatomical tracers: applications and pitfalls. Brain Res. Bull. 25, 139–145 (1990).

    CAS  Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Rapalino, O., Lazarov-Spiegler, O., Agranov, E. et al. Implantation of stimulated homologous macrophages results in partial recovery of paraplegic rats. Nat Med 4, 814–821 (1998). https://doi.org/10.1038/nm0798-814

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm0798-814

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing