Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Induction of basal cell carcinoma features in transgenic human skin expressing Sonic Hedgehog

Abstract

Hedgehog (HH) signaling proteins mediate inductive events during animal development1–11. Mutation of the only known HH receptor gene, Patched (PTC), has recently been implicated in inherited and sporadic forms of the most common human cancer, basal cell carcinoma (BCC)12–14. In Drosophila, HH acts by inactivating PTC function1,3, raising the possibility that overexpression of Sonic Hedgehog (SHH) in human epidermis might have a tumorigenic effect equivalent to loss of PTC function. We used retroviral transduction of normal human keratinocytes to constitutively express SHH. SHH-expressing cells demonstrated increased expression of both the known HH target, BMP-2B, as well as bcl-2, a protein prominently expressed by keratinocytes in BCCs. These keratinocytes were then used to regenerate human skin transgenic for long terminal repeat-driven SHH (LTR-SHH) on immune-deficient mice. LTR-SHH human skin consistently displays the abnormal specific histologic features seen in BCCs, including downgrowth of epithelial buds into the dermis, basal cell palisading and separation of epidermis from the underlying dermis. In addition, LTR-SHH skin displays the gene expression abnormalities previously described for human BCCs, including decreased BP180/BPAG2 and laminin 5 adhesion proteins and expression of basal epidermal keratins. These data indicate that expression of SHH in human skin recapitulates features of human BCC in vivo, suggest that activation of this conserved signaling pathway contributes to the development of epithelial neoplasia and describe a new transgenic human tissue model of neoplasia.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Ingham, P.W. Signalling by Hedgehog family proteins in Drosophila and vertebrate development. Opin. Gene Dev. 5, 492–498 (1995).

    Article  CAS  Google Scholar 

  2. Nusslein-Volhard, C. & Wieschaus, E. Mutations affecting segment number and polarity in Drosophila. Nature 287, 795–801 (1980).

    Article  CAS  Google Scholar 

  3. Chen, Y. & Struhl, G. Dual roles for patched in sequestering and transducing Hedgehog. Cell 87, 553–563 (1996).

    Article  CAS  Google Scholar 

  4. Hammerschmidt, M., Brook, A. & McMahon, A.P. The world according to Hedgehog. Trends Genet. 13, 14–21 (1997).

    Article  CAS  Google Scholar 

  5. Tabata, T. & Kornberg, T.B. Hedgehog is a signaling protein with a key role in patterning Drosophila imaginal discs. Cell 76, 89–102 (1994).

    Article  CAS  Google Scholar 

  6. Riddle, R.D., Johnson, R.L., Laufer, J. & Tabin, C. Hedgehog mediates the polarizing activity of the ZPA. Cell 75, 1401–1416 (1993).

    Article  CAS  Google Scholar 

  7. McMahon, A.P. & Chuang, P.-T. Hedgehogs in the clinic. Nature Med. 2, 1308–1310 (1996).

    Article  CAS  Google Scholar 

  8. Echelard, Y. et al. Sonic Hedgehog, a member of a family of putative signaling molecules, is implicated in the regulation of CNS polarity. Cell 75, 1417–1430 (1993).

    Article  CAS  Google Scholar 

  9. Chiang, C. et al. Cyclopia and defective axial patterning in mice lacking Sonic Hedgehog gene function. Nature 383, 407–413 (1996).

    Article  CAS  Google Scholar 

  10. Belloni, E. et al. Identification of Sonic Hedgehog as a candidate gene responsible for holoprosencephaly. Nature Genet. 14, 353–356 (1996).

    Article  CAS  Google Scholar 

  11. Roessler, E. et al. Mutations in the human Sonic Hedgehog gene cause holoprosencephaly. Nature Genet. 14, 357–360 (1996).

    Article  CAS  Google Scholar 

  12. Hahn, H. et al. Mutations of the human homolog of Drosophila patched in the nevoid basal cell carcinoma syndrome. Cell 85, 841–851 (1996)

    Article  CAS  Google Scholar 

  13. Johnson, R.L. et al. Human homolog of patched, a candidate gene for the basal cell nevus syndrome. Science 272, 1668–1671 (1996).

    Article  CAS  Google Scholar 

  14. Gailani, M.R. et al. The role of the human homologue of Drosophila patched in sporadic basal cell carcinomas. Nature Genet. 14, 78–81 (1996).

    Article  CAS  Google Scholar 

  15. Ingham, P.W. & Hidalgo, A. Regulation of wingless transcription in the Drosophila embryo. Development 117, 283–291 (1993).

    CAS  Google Scholar 

  16. Bitgood, M.J. & McMahon, A.P. Hedgehog and Bmp genes are coexpressed at many diverse sites of cell-cell interaction in the mouse embryo. Dev. Bid. 172, 126–138 (1995).

    Article  CAS  Google Scholar 

  17. Oro, A.E. et al. Basal cell carcinomas in mice overexpressing Sonic Hedgehog. Science 276, 817–821 (in press).

    Article  CAS  Google Scholar 

  18. Jinnah, H.A. et al. Dopamine deficiency in a genetic mouse model of Lesch-Nyhan disease. J. Neurosci. 14, 1164 (1994).

    Article  CAS  Google Scholar 

  19. Snouwaert, J.N. et al. A murine model of cystic fibrosis. Am.J. Resp. Crit. Care Med. 151, S59 (1995).

    Article  CAS  Google Scholar 

  20. Porter, J.A. et al. The product of Hedgehog autoproteolytic cleavage active in local and long-range signalling. Nature 374, 363–366 (1995).

    Article  CAS  Google Scholar 

  21. Bumbrot, D.A., Takada, R. & McMahon, A.P. Proteolytic processing yields two secreted forms of Sonic Hedgehog. Mol. Cell. Biol. 5, 2294–2303 (1995).

    Article  Google Scholar 

  22. Morales-Ducret, C.R., van de Rijn, M., LeBrun, D.P. & Smoller, B.R. bcl-2 expression in primary malignancies of the skin. Arch. Dermatol. 131, 909–12 (1995).

    Article  CAS  Google Scholar 

  23. Medalle, D.A. et al. Evaluation of human skin reconstituted from composite grafts of cultured keratinocytes and human acellular dermis transplanted to athymic mice. J. Invest. Dermatol. 107, 121–127 (1996).

    Article  Google Scholar 

  24. Choate, K.A., Kinsella, T.M., Medalie, D.A., Morgan, J.R. & Khavari, P.A. Corrective gene transfer in the human skin disorder lamellar ichthyosis. Nature Med. 2, 1263–1267 (1996).

    Article  CAS  Google Scholar 

  25. Lever, W.F. & Schaumberg-Lever, G. Histopathology of the Skin. pp. 622–634 (Lippincott, Philadelphia, 1990).

    Google Scholar 

  26. Miller, S.J. Biology of basal cell carcinoma (Part I). J. Am. Acad. Dermatol. 24, 1–13 (1991).

    Article  CAS  Google Scholar 

  27. Miller, S.J. Biology of basal cell carcinoma (Part II). J. Am. Acad. Dermatol. 24, 161–75 (1991).

    Article  CAS  Google Scholar 

  28. Fairley, J.A., Heintz, P.W., Neuburg, M., Diaz, L.A. & Giudice, G.J. Expression pattern of the bullous pemphigoid-180 antigen in normal and neoplastic epithelia. Br. J. Dermatol. 133, 385–91 (1995).

    Article  CAS  Google Scholar 

  29. Savoia, P., Trusolino, L., Pepino, E., Cremona, O. & Marchisio, P.C. Expression and topography of integrins and basement membrane proteins in epidermal carcinomas: Basal but not squamous cell carcinomas display loss of alpha 6 beta 4 and BM-600/nicein. J. Invest. Dermatol. 101, 352–8 (1993).

    Article  CAS  Google Scholar 

  30. Arbeit, J.M. Transgenic models of epidermal neoplasia and multistage carcinogenesis. Cancer Surv. 26, 7–34 (1996).

    CAS  PubMed  Google Scholar 

  31. van den Heuvel, M. & Ingham, P.W. Smoothened encodes a receptor-like serpentine protein required for Hedgehog signalling. Nature 382, 547–551 (1996).

    Article  CAS  Google Scholar 

  32. Stone, D.M. et al. Vertebrate homologues of patched and smoothened compose a receptor for Sonic Hedgehog. Nature 384, 129–133 (1996).

    Article  CAS  Google Scholar 

  33. Alcedo, J., Ayzenzon, M., Von Ohlen, T., Noll, M. & Hooper, J.E. The Drosophila smoothened gene encodes a seven-pass membrane protein, a putative receptor for the Hedgehog signal. Cell 86, 221–232 (1996).

    Article  CAS  Google Scholar 

  34. Hardy, M.H. The secret life of the hair follicle. Trends Genet. 8, 55–61 (1992).

    Article  CAS  Google Scholar 

  35. Sands, A.T., Abuin, A., Sanchez, A., Conti, C.J. & Bradley, A. High susceptibility to ultraviolet-induced carcinogenesis in mice lacking XPC. Nature 377, 162–5 (1995).

    Article  CAS  Google Scholar 

  36. Marigo, V. et al. Cloning, expression, and chromosomal location of SHH and IHH: Two human homologues of the Drosophila segment polarity gene Hedgehog. Genomics 28, 44–51 (1995).

    Article  CAS  Google Scholar 

  37. Kinsella, T.M. & Nolan, G.P. Use of Epstein-Barr virus episomes for rapid, stable, high-titer retrovirus production. Hum. Gene Ther. 7, 1405–1413 (1996).

    Article  CAS  Google Scholar 

  38. Choate, K.A., Kinsella, T.M., Williams, M.L., Nolan, G.P. & Khavari, P.A. Transglutaminase 1 gene delivery to lamellar iehthyosis keratinocytes. Hum. Gene Ther. 7, 2247–2253 (1996).

    Article  CAS  Google Scholar 

  39. Rheinwald, J.G. & Green, H. Serial cultivation of strains of human epidermal keratinocytes. Cell 6, 331 (1975).

    Article  CAS  Google Scholar 

  40. Khavari, P.A., Peterson, C.L., Tamkun, J.W., Mendel, D.B. & Crabtree, G.R. BRG1 contains a conserved domain of the SWI2/SNF2 gene family necessary for normal mitotic growth and transcription. Nature 366, 170 (1993).

    Article  CAS  Google Scholar 

  41. Murphy, G.F., Flynn, T.C., Rice, R.H. & Pinkus, G.S. Involucrin expression in normal and neoplastic human skin: A marker for keratinocyte differentiation. J. Invest. Dermatol. 82, 453–457 (1984).

    Article  CAS  Google Scholar 

  42. Dale, B.A., Gown, A.M., Fleckman, M.D., Kimball, J.R. & Resing, K.A. Characterization of two monoclonal antibodies to human epidermal keratohyalin: Reactivity with filaggrin and related proteins. J. Invest. Dermatol. 88, 307–313 (1987).

    Article  Google Scholar 

  43. Liu, Z. et al. A passive transfer model of the organ-specific autoimmune disease, bullous pemphigoid, using antibodies generated against the hemidesmosomal antigen, BP180. J. Clin. Invest. 92, 2480 (1993).

    Article  CAS  Google Scholar 

  44. Marinkovich, M.P. et al. Basement membrane proteins kalinin and nicein are structurally and immunologically identical. Lab. Invest. 69, 295–9 (1993).

    CAS  Google Scholar 

  45. Purkis, P.E. et al. Antibody markers of basal cells in complex epithelia. J. Cell Sci. 97, 39–50 (1990).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fan, H., Oro, A., Scott, M. et al. Induction of basal cell carcinoma features in transgenic human skin expressing Sonic Hedgehog. Nat Med 3, 788–792 (1997). https://doi.org/10.1038/nm0797-788

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm0797-788

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing