Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Adenoviral gene transfer of ciliary neurotrophic factor and brain-derived neurotrophic factor leads to long-term survival of axotomized motor neurons

Abstract

The neurotrophic factors ciliary neurotrophic factor and brainderived neurotrophic factor can prevent motor neuron cell death during development1,2 and after nerve lesion in neonatal rodents3,4. However, local and systemic application of these factors to newborn rats with damaged motor nerves rescues motor neurons only transiently during the first two weeks after axotomy5,6. In order to test the effect of continuous delivery of these factors, the effect of localized injection of CNTF- or BDNF-transducing recombinant adenoviruses into the lesioned nerves was investigated. Under such conditions, survival of axotomized motor neurons is maintained for at least 5 weeks. This way of delivery corresponds to the physiological situation in adult rodents, under which endogenous CNTF is present in the cytosol of Schwann cells and BDNF expression is upregulated after nerve lesion, making these factors available to the damaged motor neurons7,8. Recent results show that overexpression of muscle-derived neurotrophin-3 prevents degeneration of axons and motor endplates, but has only little effect on the number of motor neuron cell bodies in a murine animal model of motor neuron disease9. Therefore, techniques suitable for tonic exposure to both nerve- and muscle-derived neurotrophic factors may have implications for the design of future therapeutic strategies against human motor neuron disease.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Purchase on Springer Link

Instant access to full article PDF

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Oppenheim, R.W., Prevette, D., Qin-Wei, Y., Collins, F. & MacDonald J. Control of embryonic motor neuron survival in vivo by ciliary neurotrophic factor. Science 251, 1616–1618 (1991).

    Article  CAS  Google Scholar 

  2. Oppenheim, R.W., Qin-Wei, Y., Prevette, D. & Yan, Q. Brain-derived neurotrophic factor rescues developing avian motor neurons from cell death. Nature 360, 755–757 (1992).

    Article  CAS  Google Scholar 

  3. Sendtner, M., Kreutzberg, G.W. & Thoenen, H. Ciliary neurotrophic factor prevents the degeneration of motor neurons after axotomy. Nature 345, 440–441 (1990).

    Article  CAS  Google Scholar 

  4. Sendtner, M., Holtmann, B., Kolbeck, R., Thoenen, H. & Barde, Y.-A. Brain-derived neurotrophic factor prevents the death of motor neurons in newborn rats after nerve section. Nature 360, 757–758 (1992).

    Article  CAS  Google Scholar 

  5. Eriksson, N.P., Lindsay, R.M. & Aldskogius, H. BDNF and NT-3 rescue sensory but not motoneurones following axotomy in the neonate. Neuroreport 5, 1445–1448 (1994).

    CAS  Google Scholar 

  6. Vejsada, R., Sagot, Y. & Kato, A.C. Quantitative comparison of the transient rescue effects of neurotrophic factors on axotomized motor neurons in vivo. Eur. J. Neurosci. 7, 108–115 (1995).

    Article  CAS  Google Scholar 

  7. Sendtner, M., Stöckli, K.A. & Thoenen, H. Synthesis and location of ciliary neurotrophic factor in the rat sciatic nerve of the adult rat after lesion and during regeneration. J. Cell Biol. 118, 139–148 (1992).

    Article  CAS  Google Scholar 

  8. Meyer, M., Matsuoka, I., Wetmore, C., Olson, L. & Thoenen, H. Enhanced synthesis of brain-derived neurotrophic factor in the lesioned peripheral nerve: Different mechanisms are responsible for the regulation of BDNF and NGF mRNA. J. Cell Biol. 119, 45–54 (1992).

    Article  CAS  Google Scholar 

  9. Haase, G. et al. Gene therapy of murine motor neuron disease using adenoviral vectors for neurotrophic factors. Nature Med. 3, 429–436 (1997).

    Article  CAS  Google Scholar 

  10. Oppenheim, R.W. Naturally occurring cell death during neural development. Trends Neurosci. 8, 487–493 (1985).

    Article  Google Scholar 

  11. Yan, Q. et al. Influences of neurotrophins on mammalian motor neurons in vivo. J. Neurobiol. 24, 1555–1577 (1993).

    Article  CAS  Google Scholar 

  12. Hirano, A. & Iwata, M. Pathology of motor neurons with special reference to amyotrophic lateral sclerosis and related diseases. in: Amyotrophic Lateral Sclerosis. (eds. Tsubaki, T. & Toyokura, Y.) 107–134 (University Park Press, Baltimore, 1979).

    Google Scholar 

  13. Schmalbruch, H. Motor neuron death after sciatic nerve section in newborn rats. J. Comp. Neurol. 224, 252–258 (1984).

    Article  CAS  Google Scholar 

  14. Hughes, R.A., Sendtner, M. & Thoenen, H. Members of several gene families influence survival of rat motor neurons in vitro and in vivo. J. Neurosci. Res. 36, 663–671 (1993).

    Article  CAS  Google Scholar 

  15. Henderson, C.E. et al. GDNF: A potent survival factor for motor neurons present in peripheral nerve and muscle. Science 266, 1062–1064 (1994).

    Article  CAS  Google Scholar 

  16. Yan, Q., Elliott, J. & Snider, W.D. Brain-derived neurotrophic factor rescues spinal motor neurons from axotomy-induced cell death. Nature 360, 753–755 (1992).

    Article  CAS  Google Scholar 

  17. Koliatsos, V.E. et al. Neurotrophin 4/5 is a trophic factor for mammalian facial motor neurons. Proc. Natl. Acad. Sci. USA 91, 3304–3308 (1994).

    Article  CAS  Google Scholar 

  18. Yan, Q., Matheson, C. & Lopez, O.T. In vivo neurotrophic effects of GDNF on neonatal and adult facial motor neurons. Nature 373, 341–344 (1995).

    Article  CAS  Google Scholar 

  19. Martinou, J.C., Martinou, I. & Kato, A. Cholinergic differentiation factor (CDF/LIF) promotes survival of isolated rat embryonic motor neurons in vitro. Neuron 8, 737–744 (1992).

    Article  CAS  Google Scholar 

  20. Sendtner, M. et al. Ciliary neurotrophic factor prevents degeneration of motor neurons in mouse mutant progressive motor neuronopathy. Nature 358, 502–504 (1992).

    Article  CAS  Google Scholar 

  21. Ikeda, K. et al. Effects of brain-derived neurotrophic factor on motor dysfunction in wobbler mouse motor neuron disease. Ann. Neurol. 37, 505–511 (1995).

    Article  CAS  Google Scholar 

  22. Mitsumoto, H. et al. The effects of ciliary neurotrophic factor on motor neuron dysfunction in wobbler mouse motor neuron disease. Ann. Neurol. 36, 142–148 (1994).

    Article  CAS  Google Scholar 

  23. Mitsumoto H. et al. Arrest of motor neuron disease in wobbler mice cotreated with CNTF and BDNF. Science 265, 1107–1110 (1994).

    Article  CAS  Google Scholar 

  24. Miller, R.G. et al. A placebo-controlled trial of recombinant human ciliary neurotrophic (rhCNTF) factor in amyotrophic lateral sclerosis. Ann. Neurol. 39, 256–260 (1996).

    Article  CAS  Google Scholar 

  25. Dittrich, F., Thoenen, H., H. & Sendtner, M. Ciliary neurotrophic factor: Pharmacokinetics and acute phase response. Ann. Neurol. 35, 151–163 (1994).

    Article  CAS  Google Scholar 

  26. ALS CNTF Treatment Study (ACTS) Phase l-ll Group.The pharmacokinetics of subcutaneously administered recombinant human ciliary neurotrophic factor (rHCNTF) in patients with amyotrophic lateral sclerosis. Clin. Neuropharmacol. 18, 500–518 (1995).

  27. Vejsada, R., Sagot, Y. & Kato, A.C. BDNF-mediated rescue of axotomized motor neurones decreases with increasing dose. Neuroreport 5, 1889–1892 (1994).

    Article  CAS  Google Scholar 

  28. Carter, B.D., Zirrgiebel, U. & Barde, Y.A. Differential regulation of p21ras activation in neurons by nerve growth factor and brain-derived neurotrophic factor. J. Biol. Chem. 270, 21751–21757 (1995).

    Article  CAS  Google Scholar 

  29. Yan, Q., Matheson, C. Lopez, O.T. & Miller, J.A. The biological responses of axotomized adult motor neurons to brain-derived neurotrophic factor. J. Neurosci. 14, 5281–5291 (1994).

    Article  CAS  Google Scholar 

  30. Dittrich, F. et al. Pharmacokinetics of intrathecally applied BDNF and effects on spinal motor neurons. Exp. Neurol. 141, 225–239 (1996).

    Article  CAS  Google Scholar 

  31. Stöckli, K.A. et al. Molecular cloning, expression and regional distribution of rat ciliary neurotrophic factor. Nature 342, 920–923 (1989).

    Article  Google Scholar 

  32. Stöckli, K.A. et al. Regional distribution, developmental changes and cellular localization of CNTF-mRNA and protein in the rat brain. J. Cell Biol. 115, 447–459 (1991).

    Article  Google Scholar 

  33. Sagot, Y. et al. Polymer encapsulated cell lines genetically engineered to release ciliary neurotrophic factor can slow down progressive motor neuronopathy in the mouse. Eur. J. Neurosci. 7, 1313–1322 (1995).

    Article  CAS  Google Scholar 

  34. Jones, N. & Schenk, T. Isolation of adenovirus type 5 host range deletion mutants defective for transformation of rat embryo cells. Cell 17, 683–689 (1979).

    Article  CAS  Google Scholar 

  35. Vilquin, J.-T. et al. FK 506 immunosuppression to control the immune reactions triggered by first-generation adenovirus-mediated gene transfer. Hum. Gene Ther. 6, 1391–1401 (1995).

    Article  CAS  Google Scholar 

  36. Masu, Y. et al. Disruption of the CNTF gene results in motor neuron degeneration. Nature 365, 27–32 (1993).

    Article  CAS  Google Scholar 

  37. Le Gal La Salle, G. et al. An adenovirus vector for gene transfer into neurons and glia in the brain. Science 259, 988–990 (1993).

    Article  CAS  Google Scholar 

  38. Akli, S. et al. Transfer of a foreign gene into the brain using adenovirus vectors. Nature Genet. 3, 224–228 (1993).

    Article  CAS  Google Scholar 

  39. Stratford-Perricaudet, L.D., Makeh, I., Perricaudet, M. & Briand, P. Widespread long-term gene transfer to mouse skeletal muscles and heart. J. Clin. Invest. 90, 626–630 (1992).

    Article  CAS  Google Scholar 

  40. Tripathy, K.S., Hugh, B.B., Goldwasser, E. & Leiden J.M. Immune responses to transgene-encoded proteins limit the stability of gene expression after injection of replication-defective adenovirus vectors. Nature Med. 2, 545–550 (1996).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gravel, C., Götz, R., Lorrain, A. et al. Adenoviral gene transfer of ciliary neurotrophic factor and brain-derived neurotrophic factor leads to long-term survival of axotomized motor neurons. Nat Med 3, 765–770 (1997). https://doi.org/10.1038/nm0797-765

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm0797-765

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing