Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

High-density lipoprotein binding to scavenger receptor-BI activates endothelial nitric oxide synthase

Abstract

Atherosclerosis is the primary cause of cardiovascular disease, and the risk for atherosclerosis is inversely proportional to circulating levels of high-density lipoprotein (HDL) cholesterol. However, the mechanisms by which HDL is atheroprotective are complex and not well understood1,2. Here we show that HDL stimulates endothelial nitric oxide synthase (eNOS) in cultured endothelial cells. In contrast, eNOS is not activated by purified forms of the major HDL apolipoproteins ApoA-I and ApoA-II or by low-density lipoprotein. Heterologous expression experiments in Chinese hamster ovary cells reveal that scavenger receptor-BI (SR-BI) mediates the effects of HDL on the enzyme. HDL activation of eNOS is demonstrable in isolated endothelial-cell caveolae where SR-BI and eNOS are colocalized, and the response in isolated plasma membranes is blocked by antibodies to ApoA-I and SR-BI, but not by antibody to ApoA-II. HDL also enhances endothelium- and nitric-oxide–dependent relaxation in aortae from wild-type mice, but not in aortae from homozygous null SR-BI knockout mice. Thus, HDL activates eNOS via SR-BI through a process that requires ApoA-I binding. The resulting increase in nitric-oxide production might be critical to the atheroprotective properties of HDL and ApoA-I.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: HDL activates eNOS in endothelial cells.
Figure 2: eNOS activation by HDL requires SR-BI and occurs in endothelial caveolae.
Figure 3: HDL enhances endothelial NO production in aortae from wild-type mice, but not in aortae from homozygous SR-BI–null mutant mice.

Similar content being viewed by others

References

  1. Gordon, D.J. & Rifkind, B.M. High-density lipoprotein–the clinical implications of recent studies. N. Engl. J. Med. 321, 1311–1316 (1989).

    Article  CAS  Google Scholar 

  2. Krieger, M. The “best” of cholesterols, the “worst” of cholesterols: A tale of two receptors. Proc. Soc. Exp. Biol. Med. 95, 4077–4080 (1998).

    CAS  Google Scholar 

  3. Harrison, D.G. Endothelial dysfunction in atherosclerosis. Basic Res. Cardiol. 89, 87–102 (1994).

    CAS  PubMed  Google Scholar 

  4. Cohen, R.A. The role of nitric oxide and other endothelium-derived vasoactive substances in vascular disease. Prog. Cardiovasc. Dis. 38, 105–128 (1995).

    Article  CAS  Google Scholar 

  5. Lefer, A.M. & Ma, X.L. Decreased basal nitric oxide release in hypercholesterolemia increases neutrophil adherence to rabbit coronary artery endothelium. Arterioscler. Thromb. 13, 771–776 (1993).

    Article  CAS  Google Scholar 

  6. Cayatte, A.J., Palacino, J.J., Horten, K. & Cohen, R.A. Chronic inhibition of nitric oxide production accelerates neointima formation and impairs endothelial function in hypercholesterolemic rabbits. Arterioscler. Thromb. 14, 753–759 (1994).

    Article  CAS  Google Scholar 

  7. Ignarro, L.J., Cirino, G., Casini, A. & Napoli, C. Nitric oxide as a signaling molecule in the vascular system: an overview. J. Cardiovasc. Pharmacol. 34, 879–886 (1999).

    Article  CAS  Google Scholar 

  8. Shaul, P.W. & Anderson, R.G.W. Role of plasmalemmal caveolae in signal transduction. Am. J. Physiol. Lung Cell. Mol. Physiol. 275, L843–L851 (1998).

    Article  CAS  Google Scholar 

  9. Zannis, V. I., Kardassis, D & Zannis, E.E. Genetic mutations affecting human lipoproteins, their receptors, and their enzymes. in Advances in Human Genetics (eds. Harris, H. & Hirschhorn, K.) 145–319 (Plenum, New York, 1993).

    Google Scholar 

  10. Kingsley, D.M. & Krieger, M. Receptor-mediated endocytosis of low density lipoprotein: somatic cell mutants define multiple genes required for expression of surface-receptor activity. Proc. Natl. Acad. Sci. USA 81, 5454–5458 (1984).

    Article  CAS  Google Scholar 

  11. Stangl, H., Cao, G., Wyne, K.W. & Hobbs, H.H. Scavenger receptor, class B, type I-dependent stimulation of cholesterol esterification by high density lipoproteins, low density lipoproteins, and nonlipoprotein cholesterol. J. Biol. Chem. 273, 31002–31008 (1998).

    Article  CAS  Google Scholar 

  12. Babitt, J. et al. Murine SR-BI, a high density lipoprotein receptor that mediates selective lipid uptake, is N-glycosylated and fatty acylated and colocalizes with plasma membrane caveolae. J. Biol. Chem. 272, 13242–13249 (1997).

    Article  CAS  Google Scholar 

  13. Uittenbogaard, A. et al. High density lipoprotein prevents oxidized low density lipoprotein-induced inhibition of endothelial nitric oxide synthase localization and activation in caveolae. J. Biol. Chem. 275, 11278–11283 (2000).

    Article  CAS  Google Scholar 

  14. Chambliss, K.L. et al. ER–α and eNOS are organized into a functional signaling module in caveolae. Circ. Res. 87, E44–E52 (2000).

    Article  CAS  Google Scholar 

  15. Liadaki, K.N. et al. Binding of high density lipoprotein (HDL) and discoidal reconstituted HDL to the HDL receptor scavenger receptor class B type I. J. Biol. Chem. 275, 21262–21271 (2000).

    Article  CAS  Google Scholar 

  16. Rigotti, A. et al. A targeted mutation in the murine gene encoding the high density lipoprotein (HDL) receptor scavenger receptor class B type I reveals its key role in HDL metabolism. Proc. Natl. Acad. Sci. USA 94, 12610–12615 (1997).

    Article  CAS  Google Scholar 

  17. Fidge, N.H. High density lipoprotein receptors, binding proteins, and ligands. J. Lipid Res. 40, 187–201 (1999).

    CAS  PubMed  Google Scholar 

  18. Trigatti, B. et al. Influence of the high density lipoprotein receptor SR-BI on reproductive and cardiovascular pathophysiology. Proc. Natl. Acad. Sci. USA 96, 9322–9327 (1999).

    Article  CAS  Google Scholar 

  19. Jolley, C.D., Woollett, L.A., Turley, S.D. & Dietschy, J.M. Centripetal cholesterol flux to the liver is dictated by events in the peripheral organs and not by the plasma high density lipoproteinor apolipoprotein A-I concentration. J. Lipid Res. 39, 2143–2149 (1998).

    CAS  PubMed  Google Scholar 

  20. Xia, P., Vadas, M.A., Rye, K.-A., Barter, P.J. & Gamble, J.R. High density lipoproteins interrupt the sphingosine kinase pathway. J. Biol. Chem. 274, 33143–33147 (1999).

    Article  CAS  Google Scholar 

  21. Ross, R. Atherosclerosis- an inflammatory disease. New Engl. J. Med. 340, 115–126 (1999).

    Article  CAS  Google Scholar 

  22. Acton, S. et al. Identification of scavenger receptor SR-BI as high density lipoprotein receptor. Science 271, 518–520 (1996).

    Article  CAS  Google Scholar 

  23. Stangl, H., Hyatt, M. & Hobbs, H.H. Transport of lipids from high and low density lipoproteins via scavenger receptor-BI. J. Biol. Chem. 274, 32692–32698 (1999).

    Article  CAS  Google Scholar 

  24. Swarnakar, S., Temel, R.E., Connelly, M.A., Azhar, S. & Williams, D.L. Scavenger receptor class B, type I, mediates selective uptake of low density lipoprotein cholesteryl ester. J. Biol. Chem. 274, 29733–29739 (1999).

    Article  CAS  Google Scholar 

  25. Kellner-Weibel, G. et al. Expression of scavenger receptor BI in COS-7 cells alters cholesterol content and distribution. Biochemistry 39, 221–229 (2000).

    Article  CAS  Google Scholar 

  26. Reaven, E., Leers-Sucheta, S., Nomoto, A. & Azhar, S. Expression of scavenger receptor class B type 1 promotes microvillar channel formation and selective cholesteryl ester transport in a heterologous reconstituted system. Proc. Natl. Acad. Sci. USA 98, 1613–1618 (2001)

    Article  CAS  Google Scholar 

  27. Ikemoto, M. et al. Identification of a PDZ-domain-containing protein that interacts with the scavenger receptor class B type I. Proc. Natl. Acad. Sci. USA 97, 6538–6543 (2000).

    Article  CAS  Google Scholar 

  28. Pace, M.C. et al. Establishment of an immortalized fetal intrapulmonary artery endothelial cell line. Am. J. Physiol. Lung Cell. Mol. Physiol. 277, L106–L112 (1999).

    Article  CAS  Google Scholar 

  29. Shaul, P.W. et al. Acylation targets endothelial nitric oxide synthase to plasmalemmal caveolae. J. Biol. Chem. 271, 6518–6522 (1996).

    Article  CAS  Google Scholar 

  30. Bergeron, J. et al. Characterization of human apolipoprotein A-I expressed in Escherichia coli. Biochim. Biophys. Acta 1344, 139–152 (1997).

    Article  CAS  Google Scholar 

  31. Weisweiler, P. Isolation and quantitation of apolipoproteins A-I and A-II from human high -density lipoproteins by fast-protein liquid chromatography. Clinica. Chimica. Acta. 169, 249–254 (1987).

    Article  CAS  Google Scholar 

  32. Jun, S.S., Chen, Z., Pace, M.C. & Shaul, P.W. Estrogen upregulates cyclooxygenase-1 gene expression in ovine fetal pulmonary artery endothelium. J. Clin. Invest. 102, 176–183 (1998).

    Article  CAS  Google Scholar 

  33. Zhu, Y., Lu, P. & Mendelsohn, M.E. Basal release of nitric oxide in mouse aortic rings is inhibited by antiestrogens but not affected by estrogen receptor beta. Circulation 100, I–219 (1999).

  34. Shaul, P.W., Farrar, M.A. & Zellers, T.M. Oxygen modulates endothelium-derived relaxing factor production in fetal pulmonary arteries. Am. J. Physiol. Heart Circ. Physiol. 262, H355–H364 (1992).

    Article  CAS  Google Scholar 

  35. Hayashi, T., Fukuto, J.M., Ignarro, L.J. & Chaudhuri, G. Basal release of nitric oxide from aortic rings is greater in female rabbits than male rabbits: implications for atherosclerosis. Proc. Natl. Acad. Sci. USA 89, 11259–11263 (1992).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank M. Dixon for preparing this manuscript. This work was supported by National Institutes of Health grants HL58888, HL53546 and HD30276 (to P.W.S.), NL20948 (to H.H.H.), GM52016 (to R.G.W.A.), and HL56069 and HL59953 (to M.E.M.). The project was also supported in part by a Group Grant from CIHR, GR11471 (to Y.L.M.), the Lowe Foundation, the Reynolds Foundation and the Perot Family Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philip W. Shaul.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yuhanna, I., Zhu, Y., Cox, B. et al. High-density lipoprotein binding to scavenger receptor-BI activates endothelial nitric oxide synthase. Nat Med 7, 853–857 (2001). https://doi.org/10.1038/89986

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/89986

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing