Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Transmissible spongiform encephalopathies, amyloidoses and yeast prions: Common threads?

Abstract

Mammalian transmissible spongiform encephalopathy (prion) and amyloid diseases seem to involve the self-propagation of abnormal fibrillar or sub-fibrillar protein aggregates. Similar processes explain protein-mediated inheritance by yeast prions. Indeed, yeast prions are more surely mediated solely by aberrant protein aggregates than are their mammalian namesakes. Tantalizing parallels make yeast prions attractive models of mammalian protein-folding diseases.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Electron micrographs of amyloid-like fibrils of PrP-res, ure2p and sup35p.
Figure 2: Seeded (nucleated) polymerization models for prion or amyloid formation.
Figure 3: Domain structures of PrP, ure2p and sup35p.

Similar content being viewed by others

References

  1. Griffith, J.S. Self-replication and scrapie. Nature 215, 1043–1044 (1967).

    Article  CAS  Google Scholar 

  2. Prusiner, S.B. Prions. Proc. Natl. Acad. Sci. USA 95, 13363 –13383 (1998).

    Article  CAS  Google Scholar 

  3. Horiuchi, M. & Caughey, B. Prion protein interconversions and the transmissible spongiform encephalopathies. Structure Fold. Des. 7, R231–240 ( 1999).

    Article  CAS  Google Scholar 

  4. Wickner, R.B. [URE3] as an altered URE2 protein: evidence for a prion analog in Saccharomyces cerevisiae. Science 264, 566– 569 (1994).

    Article  CAS  Google Scholar 

  5. Sondheimer, N. & Lindquist, S. Rnq1: an epigenetic modifier of protein function in yeast. Mol. Cell 5, 163–172 (2000).

  6. Li, L. & Lindquist, S. Creating a protein-based element of inheritance. Science 287, 661– 664 (2000).

    Article  CAS  Google Scholar 

  7. Santoso, A., Chien, P., Osherovich, L.Z. & Weissman, J.S. Molecular basis of a yeast prion species barrier. Cell 100, 277–288 (2000).

    Article  CAS  Google Scholar 

  8. Kocisko, D.A. et al. Cell-free formation of protease-resistant prion protein. Nature 370, 471–474 ( 1994).

    Article  CAS  Google Scholar 

  9. Lasmezas, C.I. et al. Transmission of the BSE agent to mice in the absence of detectable abnormal prion protein. Science 275, 402 –405 (1997).

    Article  CAS  Google Scholar 

  10. Akowitz, A., Sklaviadis, T., Manuelidis, E.E. & Manuelidis, L. Nuclease-resistant polyadenylated RNAs of significant size are detected by PCR in highly purified Creutzfeldt-Jakob disease preparations. Microb. Pathog. 9, 33–45 (1990).

    Article  CAS  Google Scholar 

  11. Appel, T.R., Dumpitak, C., Matthiesen, U. & Riesner, D. Prion rods contain an inert polysaccharide scaffold. Biol. Chem. 380, 1295–1306 ( 1999).

    Article  CAS  Google Scholar 

  12. Klein, T.R., Kirsch, D., Kaufmann, R. & Riesner, D. Prion rods contain small amounts of two host sphingolipids as revealed by thin-layer chromatography and mass spectrometry. Biol. Chem. 379, 655–666 (1998).

    Article  CAS  Google Scholar 

  13. Wickner, R.B., Edskes, H.K., Maddelein, M.L., Taylor, K.L. & Moriyama, H. Prions of yeast and fungi. Proteins as genetic material. J. Biol. Chem. 274, 555–558 (1999).

    Article  CAS  Google Scholar 

  14. Maddelein, M.L. & Wickner, R.B. Two prion-inducing regions of Ure2p are nonoverlapping. Mol. Cell Biol. 19, 4516–4524 (1999).

    Article  CAS  Google Scholar 

  15. Masison, D.C. & Wickner, R.B. Prion-inducing domain of yeast Ure2p and protease resistance of Ure2p in prion-containing cells . Science 270, 93–95 (1995).

    Article  CAS  Google Scholar 

  16. Taylor, K.L., Cheng, N., Williams, R.W., Steven, A.C. & Wickner, R.B. Prion domain initiation of amyloid formation in vitro from native Ure2p. Science 283, 1339–1343 (1999).

    Article  CAS  Google Scholar 

  17. Patino, M.M., Liu, J.J., Glover, J.R. & Lindquist, S. Support for the prion hypothesis for inheritance of a phenotypic trait in yeast. Science 273, 622–626 ( 1996).

    Article  CAS  Google Scholar 

  18. Glover, J.R. et al. Self-seeded fibers formed by sup35, the protein determinant of [PSI+], a heritable prion-like factor of S. cerevisiae . Cell 89, 811–819 (1997).

    Article  CAS  Google Scholar 

  19. King, C.Y. et al. Prion-inducing domain 2–114 of yeast Sup35 protein transforms in vitro into amyloid-like filaments. Proc. Natl. Acad. Sci. USA 94, 6618–6622 ( 1997).

    Article  CAS  Google Scholar 

  20. Paushkin, S.V., Kushnirov, V.V., Smirnov, V.N. & Ter-Avanesyan, M.D. In vitro propagation of the prion-like state of yeast Sup35 protein. Science 277, 381 –383 (1997).

    Article  CAS  Google Scholar 

  21. Paushkin, S.V., Kushnirov, V.V., Smirnov, V.N. & Ter-Avanesyan, M.D. Propagation of the yeast prion-like [psi+] determinant is mediated by oligomerization of the SUP35-encoded polypeptide chain release factor. EMBO J. 15, 3127– 3134 (1996).

    Article  CAS  Google Scholar 

  22. Prusiner, S.B. et al. Scrapie prions aggregate to form amyloid-like birefringent rods. Cell 35, 349–358 (1983).

    Article  CAS  Google Scholar 

  23. Kisilevsky, R., Lemieux, L., Boudreau, L., Yang, D.S. & Fraser, P. New clothes for amyloid enhancing factor (AEF): silk as AEF. Amyloid 6, 98 –106 (1999).

    Article  CAS  Google Scholar 

  24. Johan, K. et al. Acceleration of amyloid protein A amyloidosis by amyloid-like synthetic fibrils. Proc. Natl. Acad. Sci. USA 95, 2558–2563 (1998).

    Article  CAS  Google Scholar 

  25. Brown, P., Goldfarb, L.G. & Gajdusek, D.C. The new biology of spongiform encephalopathy: infectious amyloidoses with a genetic twist. Lancet 337, 1019–1022 (1991).

    Article  CAS  Google Scholar 

  26. Jarrett, J.T. & Lansbury, P.T. Jr. Seeding “one-dimensional crystallization” of amyloid: A pathogenic mechanism in Alzheimer's disease and scrapie? Cell 73, 1055–1058 (1993).

    Article  CAS  Google Scholar 

  27. Caughey, B., Kocisko, D.A., Raymond, G.J. & Lansbury, P.T. Aggregates of scrapie associated prion protein induce the cell-free conversion of protease-sensitive prion protein to the protease-resistant state. Chem. Biol. 2, 807–817 ( 1995).

    Article  CAS  Google Scholar 

  28. Dobson, C.M. Protein misfolding, evolution and disease. Trends Biochem. Sci. 24, 329–332 ( 1999).

    Article  CAS  Google Scholar 

  29. Riek, R., Hornemann, S., Wider, G., Glockshuber, R. & Wuthrich, K. NMR characterization of the full-length recombinant murine prion protein, mPrP(23-21). FEBS Lett. 413, 282–288 (1997).

    Article  CAS  Google Scholar 

  30. Donne, D.G. et al. Structure of the recombinant full-length hamster prion protein PrP(29-231): the N terminus is highly flexible. Proc. Natl. Acad. Sci. USA 94, 13452–13457 (1997).

    Article  CAS  Google Scholar 

  31. Thual, C. et al. Structural characterization of Saccharomyces cerevisiae prion-like protein Ure2. J. Biol. Chem. 274, 13666–13674 (1999).

    Article  CAS  Google Scholar 

  32. Tuite, M.F. Yeast prions and their prion-forming domain. Cell 100 , 289–292 (2000).

    Article  CAS  Google Scholar 

  33. Liu, J.J. & Lindquist, S. Oligopeptide-repeat expansions modulate ‘protein-only’ inheritance in yeast. Nature 400, 573–576 ( 1999).

    Article  CAS  Google Scholar 

  34. Collinge, J. et al. Inherited prion disease with 144 base pair gene insertion. 2. Clinical and pathological features. Brain 115, 687–710 (1992).

    Article  Google Scholar 

  35. Kaytor, M.D. & Warren, S.T. Aberrant protein deposition and neurological disease. J. Biol. Chem. 274, 37507–37510 (1999).

    Article  CAS  Google Scholar 

  36. Fischer, M. et al. Prion protein (PrP) with amino-proximal deletions restoring susceptibility of PrP knockout mice to scrapie. EMBO J. 15, 1255–1264 (1996).

    Article  CAS  Google Scholar 

  37. Priola, S.A. Prion protein and species barriers in the transmissible spongiform encephalopathies . Biomed. Pharmacother. 53, 27– 33 (1999).

    Article  CAS  Google Scholar 

  38. Kocisko, D.A. et al. Species specificity in the cell-free conversion of prion protein to protease-resistant forms: a model for the scrapie species barrier. Proc. Natl. Acad. Sci. USA 92, 3923– 3927 (1995).

    Article  CAS  Google Scholar 

  39. Raymond, G.J. et al. Molecular assessment of the transmissibilities of BSE and scrapie to humans. Nature 388, 285– 288 (1997).

    Article  CAS  Google Scholar 

  40. Bossers, A. et al. Scrapie susceptibility-linked polymorphisms modulate the in vitro conversion of sheep prion protein to protease-resistant forms . Proc. Natl. Acad. Sci. USA 94, 4931– 4936 (1997).

    Article  CAS  Google Scholar 

  41. Chernoff, Y.O. et al. Evolutionary conservation of prion-forming abilities of the yeast sup35 protein. Mol. Microbiol. 35, 865–876 (2000).

    Article  CAS  Google Scholar 

  42. Kushnirov, V.V., Kochneva-Pervukhova, N.V., Chechenova, M.B., Frolova, N.S. & Ter-Avanesyan, M.D. Prion properties of the sup35 protein of yeast pichia methanolica. EMBO J. 19, 324–331 ( 2000).

    Article  CAS  Google Scholar 

  43. Bessen, R.A. et al. Nongenetic propagation of strain-specific phenotypes of scrapie prion protein. Nature 375, 698– 700 (1995).

    Article  CAS  Google Scholar 

  44. Derkatch, I.L., Chernoff, Y.O., Kushnirov, V.V., Inge-Vechtomov, S.G. & Liebman, S.W. Genesis and variability of [PSI] prion factors in Saccharomyces cerevisiae . Genetics 144, 1375– 1386 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Coustou, V., Deleu, C., Saupe, S. & Begueret, J. The protein product of the het-s heterokaryon incompatibility gene of the fungus Podospora anserina behaves as a prion analog. Proc. Natl. Acad. Sci. USA 94, 9773–9778 ( 1997).

    Article  CAS  Google Scholar 

  46. Masison, D.C., Maddelein, M.L. & Wickner, R.B. The prion model for [URE3] of yeast: spontaneous generation and requirements for propagation. Proc. Natl. Acad. Sci. USA 94, 12503– 12508 (1997).

    Article  CAS  Google Scholar 

  47. Caughey, B.W. et al. Secondary structure analysis of the scrapie-associated protein PrP 27–30 in water by infrared spectroscopy. Biochemistry 30, 7672–7680 ( 1991).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

I thank W. Caughey, K. Hasenkrug and S. Priola for critically reading this manuscript and S.F. Hayes for assistance in obtaining the electron graph of PrP-res in Fig. 1.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Caughey, B. Transmissible spongiform encephalopathies, amyloidoses and yeast prions: Common threads?. Nat Med 6, 751–754 (2000). https://doi.org/10.1038/77476

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/77476

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing