Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

p53 activates expression of HIC-1, a new candidate tumour suppressor gene on 17p13.3

Abstract

For several human tumour types, allelic toss data suggest that one or more tumour suppressor genes reside telomeric to the p53 gene at chromosome 17p13.1. In the present study we have used a new strategy, involving molecular analysis of a DNA site hypermethylated in tumour DNA, to identify a candidate gene in this region (17p13.3). Our approach has led to identification of HIC-1 (hypermethylated in cancer), a new zinc-finger transcription factor gene which is ubiquitously expressed in normal tissues, but underexpressed in different tumour cells where it is hypermethylated. Multiple characteristics of this gene, including the presence of a p53 binding site in the 5′ flanking region, activation of the gene by expression of a wild-type p53 gene and suppression of C418 selectability of cultured brain, breast and colon cancer cells following insertion of the gene, make HIC-1 gene a strong candidate for a tumour suppressor gene in region 17p13.3.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Vogelstein, B. & Kinzler, K.W. . p53 function and dysfunction. Cell 70, 523–526 (1992).

    CAS  PubMed  Google Scholar 

  2. Chen, L.-C. et al. Loss of heterozygosity on the short arm of chromosome 17 is associated with high proliferative capacity and DNA aneuploidy in primary human breast cancer. Proc. natn. Acad. Sci. U.S.A. 88, 3847–3851 (1991).

    CAS  Google Scholar 

  3. Takita, K.-I. et al. Correlation of loss of alleles on the short arm of chromosomes 11 and 17 with metastasis of primary breast cancer to lymph nodes. Cancer Res. 52, 3914–3917 (1992).

    CAS  PubMed  Google Scholar 

  4. Deng, G. et al. Loss of heterozygosity and p53 gene mutations in breast cancer. Cancer Res. 54, 499–505 (1994).

    CAS  PubMed  Google Scholar 

  5. Cornelis, R.S. et al. Evidence for a gene on 17p13.3, distal to TP53, as a target for allele loss in breast tumors without p53 mutations. Cancer Res. 54, 4200–4206 (1994).

    CAS  PubMed  Google Scholar 

  6. Coles, C. et al. Evidence implicating at least two genes on chromosome 17p in breast carcinogenesis. Lancet 336, 761–763 (1990).

    CAS  PubMed  Google Scholar 

  7. Makos, M. et al. Distinct hypeimethylation patterns occur at altered chromosome loci in human lung and colon cancer. Proc. natn. Acad. Sci. U.S.A. 89, 1929–1933 (1992).

    CAS  Google Scholar 

  8. Makos, M. et al. DNA hypermethylation is associated with 17p allelic loss in neural tumors. Cancer Res. 53, 2715–2718 (1993).

    CAS  PubMed  Google Scholar 

  9. Makos, M. et al. Regional DNA hypermethylation at D17S5 precedes 17p structural changes in the progression of renal tumors. Cancer Res. 53, 2719–2722 (1993).

    CAS  PubMed  Google Scholar 

  10. Baylin, S.B. et al. Abnormal patterns of DNA methylation in human neoplasia: Potential consequences fortumorprogression. Cancer Cells 3, 383–390 (1991).

    CAS  PubMed  Google Scholar 

  11. Jones, P.A. & Buckley, J.D. The role of DNA methylation in cancer. Adv. Cancer Res. 54, 1–23 (1990).

    CAS  PubMed  Google Scholar 

  12. Herman, J.G. et al. Silencing of the VHL tumor suppressor gene by DNA methylation in renal carcinoma. Proc. natn. Acad. Sci. 91, 9700–9704 (1994).

    CAS  Google Scholar 

  13. Ottaviano, Y.L. et al. Methylation of the estrogen receptor gene CpG island marks loss of estrogen receptor expression in human breast cancer cells. Cancer Res. 54, 2552–2555 (1994).

    CAS  PubMed  Google Scholar 

  14. Issa, J.-P.J. et al. Methylation of the estrogen receptor CpG island links aging and neoplasia in human colon. Nature Genet. 7, 536–540 (1994).

    CAS  PubMed  Google Scholar 

  15. Steenman, M.J.C. et al. Loss of imprinting of IGF2 is linked to reduced expression and abnormal methylation of H19 in Wilms' tumour. Nature Genet. 7, 433–439 (1994).

    CAS  PubMed  Google Scholar 

  16. Ledbetter, D.H. et al. Molecular dissection of a contiguous gene syndrome: Frequent submicroscopic deletions, evolutionarily conserved sequences, and a hypomethylated “island” in the Miller-Dicker chromosome region. Proc. natn. Acad. Sci. U.S.A. 86, 5136–5140 (1989).

    CAS  Google Scholar 

  17. Gish, W. & States, D.J. Identification of protein coding regions by database similarity search. Nature Genet. 3, 266–272 (1993).

    CAS  PubMed  Google Scholar 

  18. Altschul, S.F., Gish, W., Miller, W., Myers, E.W. & Lipman, D.J. Basic local alignment search tool. J. molec. Biol. 215, 403–410 (1990).

    CAS  PubMed  Google Scholar 

  19. Numoto, M. et al. Transcriptional represser ZF5 identifies a new conserved domain in zinc finger proteins. Nucleic Acids Res. 21, 3767–3775 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Harrison, S.D. & Travers, A.A. The tramtrack gene encodes a drosophila finger protein that interacts with the ftz transcriptional regulatory region and shows a novel embryonic expression pattern. EMBO J. 9, 207–216 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. DiBello, P.R., Withers, D.A., Bayer, C.A., Fristrom, J.W. & Guild, G.M. The drosophila broad-complex encodes a family of related proteins containing zinc fingers. Genetics 129, 385–397 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Chardin, P., Courtois, G., Mattei, M.-G. & Gisselbrecht, S. The KUP gene, located on human chromosome 14, encodes a protein with two distant zinc fingers. Nucleic Acids Res. 19, 1431–1436 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Hromas, R. et al. A retinoic acid-responsive human zinc finger gene, MZF-1, preferentially expressed in myeloid cells. J. biol. Chem. 266, 14183–14187 (1991).

    CAS  PubMed  Google Scholar 

  24. Chen, Z. et al. Fusion between a novel Kruppel-like zinc finger gene and the retinoic acid receptor-α locus due to a variant t(11;17) translocation associated with acute promyelocytic leukaemia. EMBO J. 12, 1161–11671 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Kerckaert, J.-P., Deweindt, C., Tilly, H., Quief, S., Lecocq, G. & Bastard, C. LAZ3, a novel zinc-finger encoding gene, is disrupted by recurring chromosome 3q27 translocations in human lymphomas. Nature Genet. 5, 66–70 (1993).

    CAS  PubMed  Google Scholar 

  26. Ye, B.H. et al. Alterations of a zinc finger-encoding gene, BCL-6, in diffuse large-cell lymphoma. Science 262, 747–750 (1993).

    CAS  PubMed  Google Scholar 

  27. Soeller, W.C., Oh, C.E. & Kornberg, T.B. Isolation of cDNAs encoding the drosophila GAGA transcription factor. Molec. cell. Biol. 13, 7961–7970 (1993).

    CAS  PubMed  Google Scholar 

  28. Ruppert, J.M. et al. The GLI-Kruppel family of human genes. Molec. cell. Biol. 8, 3104–3113 (1988).

    CAS  PubMed  Google Scholar 

  29. El-Deiry, W.S., Kern, S.E., Pietenpol, J.A., Kinzler, K.W. & Vogelstein, B. Definition of a consensus binding site for p53. Nature Genet. 1, 45–49 (1992).

    CAS  PubMed  Google Scholar 

  30. Kern, S.E. et al. Identification of p53 as a sequence-specific DNA-binding protein. Science 252, 1708–1711 (1991).

    CAS  PubMed  Google Scholar 

  31. Funk, W.D., Pak, D.T., Karas, R.H., Wright, W.E. & Shay, J.W. A transcriptionally active DNA-binding site for human p53 protein complexes. Molec. cell. Biol. 12, 2866–2871 (1992).

    CAS  PubMed  Google Scholar 

  32. El-Deiry, W.S. et al. WAF1, a potential mediator of p53 tumor suppression. Cell 75, 817–825 (1993).

    CAS  Google Scholar 

  33. Baker, S.J., Markowitz, S., Fearon, E.R., Willson, J.K.V. & Vogelstein, B. Suppression of human colorectal carcinoma cell growth by wild-type p53. Science 249, 912–915 (1990).

    CAS  PubMed  Google Scholar 

  34. Riggs, A.D. & Pfeifer, G.D. X-chromosome inactivation and cell memory. Trends Genet. 8, 169–174 (1992).

    CAS  PubMed  Google Scholar 

  35. Li, E., Beard, C. & Jaenisch, R. Role for DNA methylation in genomic imprinting. Nature 366, 362–365 (1993).

    CAS  PubMed  Google Scholar 

  36. Yisraeli, J. et al. Muscle specific activation of a methylated chimeric actin gene. Cell 46, 409–416 (1986).

    CAS  PubMed  Google Scholar 

  37. Runnebaum, I.B., Nagarajan, M., Bowman, M., Soto, D. & Sukumar, S. Mutations in p53 as potential molecular markers for human breast cancer. Proc. natn. Acad. Sci. U.S.A. 88, 10657–10661 (1991).

    CAS  Google Scholar 

  38. Negrini, M. et al. Tumor and growth suppression of breast cancer cells by chromosome 17-associated functions. Cancer Res. 54, 1818–1824 (1994).

    CAS  PubMed  Google Scholar 

  39. Chen, P., Ellmore, N. & Weissman, B.E. Functional evidence for a second tumor suppressor gene on human chromosome 17. Molec. cell. Biol. 14, 534–542 (1994).

    CAS  PubMed  Google Scholar 

  40. Hensel, C.H., Xiang, R.H., Sakaguchi, A.Y. & Naylor, S.L. Use of the single strand conformation polymorphism technique and PCR to detect p53 gene mutations in small cell lung cancer. Oncogene 6, 1067–1071 (1991).

    CAS  PubMed  Google Scholar 

  41. Baker, S.J. et al. p53 gene mutations occur in combination with 17p allelic deletions as late events in colorectal tumorigenesis. Cancer Res. 50, 7717–7722 (1990).

    CAS  PubMed  Google Scholar 

  42. Van Meir, E.G. et al. Analysis of the p53 gene and its expression in human glioblastoma cells. Cancer Res. 54, 649–652 (1994).

    CAS  PubMed  Google Scholar 

  43. Chen, C.Y. et al. Interactions between p53 and MDM2 in a mammalian cell cycle checkpoint pathway. Proc. natn. Acad. Sci. U.S.A. 91, 2684–2688 (1994).

    CAS  Google Scholar 

  44. Kastan, M.B. et al. A mammalian cell cycle checkpoint pathway utilizing p53 and GADD45 is defective in ataxia-telangiectasia. Cell 71, 587–597 (1992).

    CAS  PubMed  Google Scholar 

  45. Miyashita, T. et al. Tumor suppressor p53 is a regulator of bcl-2 and bax gene expression in vitro and in vivo. Oncogene 9, 1799–1805 (1994).

    CAS  Google Scholar 

  46. Tsukiyama, T., Becker, P.B. & Wu, C. ATP-dependent nucleosome disruption at a heat-shock promoter mediated by binding of GAGA transcription factor. Nature 367, 525–532 (1994).

    CAS  PubMed  Google Scholar 

  47. Bardwell, V.J. & Treisman, R. The POZ domain: A conserved protein-protein interaction motif. Genes Dev. 8, 1664–1677 (1994).

    CAS  PubMed  Google Scholar 

  48. Miki, T., Kawamata, N., Hirosawa, S. & Aoki, N. Gene involved in the 3q27 translocation associated with B-cell lymphoma, BCL5, encodes a Kruppel-like zinc-finger protein. Blood 83, 26–32 (1994).

    CAS  PubMed  Google Scholar 

  49. Carney, D.N., Bepler, G. & Gazdar, A.F. The serum-free establishment and in vitro growth properties of classic and variant small cell lung cancer cell lines. Recent Results Cancer Res. 99, 157–166 (1985).

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wales, M., Biel, M., Deiry, W. et al. p53 activates expression of HIC-1, a new candidate tumour suppressor gene on 17p13.3. Nat Med 1, 570–577 (1995). https://doi.org/10.1038/nm0695-570

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm0695-570

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing