Chemical generation of nitric oxide in the mouth from the enterosalivary circulation of dietary nitrate

Abstract

High concentrations of nitrite present in saliva (derived from dietary nitrate) may, upon acidification, generate nitrogen oxides in the stomach in sufficient amounts to provide protection from swallowed pathogens. We now show that, in the rat, reduction of nitrate to nitrite is confined to a specialized area on the posterior surface of the tongue, which is heavily colonized by bacteria, and that nitrate reduction is absent in germ-free rats. We also show that in humans increased salivary nitrite production resulting from nitrate intake enhances oral nitric oxide production. We propose that the salivary generation of nitrite is accomplished by a symbiotic relationship involving nitrate-reducing bacteria on the tongue surface, which is designed to provide host defence against microbial pathogens in the mouth and lower gut. These results provide further evidence for beneficial effects of dietary nitrate.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1

    Forman, D., Al-Dabbagh, S. & Doll, R. Nitrates, nitrites and gastric cancer in Great Britain. Nature 313, 620–625 (1985).

    CAS  Article  Google Scholar 

  2. 2

    Knight, T.M. et al. Nitrate and nitrite exposure in Italian populations with different gastric cancer rates. Int. J. Epidemiol. 19, 510–515 (1990).

    CAS  Article  Google Scholar 

  3. 3

    Sugimura, T., Fujimura, S. & Baba, T. Tumour production in the glandular stomach of the rat by N-methyl-N′-nitro-N-nitrosoguanidine. Cancer Res. 30, 455–465 (1970).

    CAS  PubMed  Google Scholar 

  4. 4

    Hegesh, E. & Shiloah, J. Blood nitrates and infantile methaemoglobinaemia. Clin. Chim. Acta 125, 107–115 (1982).

    CAS  Article  Google Scholar 

  5. 5

    Tannenbaum, S.R., Weisman, M. & Fett, D. The effect of nitrate intake on nitrite formation in human saliva. Food Cosmet. Toxicol. 14, 549–552 (1976).

    CAS  Article  Google Scholar 

  6. 6

    Spiegelhalder, B., Eisenbrand, G. & Preussmann, R. Influence of dietary nitrate on nitrite content of human saliva: Possible relevance to in vivo formation of N-nitroso compounds. Food Cosmet. Toxicol. 14, 545–548 (1976).

    CAS  Article  Google Scholar 

  7. 7

    Ishiwata, H., Tanimura, A. & Ishidate, M. Studies on in vivo formation of nitroso compounds: Nitrite and nitrate concentrations in human saliva collected from salivary ducts. J. Food Hyg. Soc. Jap. 16, 89–92 (1975).

    CAS  Article  Google Scholar 

  8. 8

    Sasaki, T. & Matano, K. Formation of nitrite from nitrate at the dorsum linguae. J. Food. Hyg. Soc. lap. 20, 363–369 (1979).

    CAS  Article  Google Scholar 

  9. 9

    Haddock, B.A. & Jones, C.W. Bacterial respiration. Bacterial. Rev. 41, 47–99 (1977).

    CAS  Google Scholar 

  10. 10

    Benjamin, N. et al. Stomach NO synthesis. Nature 368, 502 (1994).

    CAS  Article  Google Scholar 

  11. 11

    Klebanoff, S.J. Reactive nitrogen intermediates and antimicrobial activity: Role of nitrite. Free Radical Biol. Med. 14, 351–360 (1993).

    CAS  Article  Google Scholar 

  12. 12

    Mancinelli, R.L. & McKay, C.P. Effects of nitric oxide and nitrogen dioxide on bacterial growth. Appl. Environ. Microbiol. 46, 198–202 (1983).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. 13

    Lundberg, J.O.N., Weitzberg, E., Lundberg, J.M. & Alving, K. Intragastric nitric oxide production in humans: Measurements in expelled air. Gut 35, 1543–1546 (1994).

    CAS  Article  Google Scholar 

  14. 14

    Dougall, H., Smith, L., Duncan, C. & Benjamin, N. The effect of a broad spectrum antibiotic on salivary nitrite concentrations: An important mechanism of adverse reactions? Br. J. clin. Pharmac. 39, 460–462 (1995).

    CAS  Article  Google Scholar 

  15. 15

    Gunsalus, R.P. Control of electron flow in Escherichia coli: Coordinated transcription of respiratory pathway genes. J. Bacterial. 174, 7069–7074 (1992).

    CAS  Article  Google Scholar 

  16. 16

    Reddy, D., Lancaster, J.R. & Cornforth, D.P. Nitrite inhibition of Clostridium botulinum: Electron spin resonance detection of iron-nitric oxide complexes. Science 221, 769–770 (1983).

    CAS  Article  Google Scholar 

  17. 17

    Wink, D.A. et al. DNA deaminating ability and genotoxicity of nitric oxide and its progenitors. Science 254, 1001–1003 (1991).

    CAS  Article  Google Scholar 

  18. 18

    Beckman, J.S., Beckman, T.W., Chen, J., Marshall, P.A. & Freeman, B.A. Apparent hydroxyl radical production by peroxynitrite: Implications for endothelial injury from nitric oxide and superoxide. Proc. natn. Acad. Sci. U.S.A. 87, 1620–1624 (1990).

    CAS  Article  Google Scholar 

  19. 19

    Hogg, N., Darley-Usmar, V.M., Wilson, M.T. & Moncada, S. Production of hydroxyl radicals from the simultaneous generation of superoxide and nitric oxide. Biochem. J. 281, 419–424 (1992).

    CAS  Article  Google Scholar 

  20. 20

    Williams, D.H.L. Nitrosation (Cambridge Univ. Press, Cambridge, 1988).

    Google Scholar 

  21. 21

    Neal, K.R., Brij, S.O., Slack, R.C.B., Hawkey, C.J. & Logan, R.F.A. Recent treatment with H2 antagonists and antibiotics and gastric surgery as risk factors for salmonella infection. Br. Med. J. 308, 176 (1994).

    CAS  Article  Google Scholar 

  22. 22

    Whittle, B.J.R., Lopez-Belmonte, J. & Moncada, S. Regulation of gastric mucosal integrity by endogenous nitric oxide: Interactions with prostanoids and sensory neuropeptides in the rat. Br. J. Pharmac. 99, 607–611 (1989).

    Article  Google Scholar 

  23. 23

    Desai, K.M., Sessa, W.C. & Vane, J.R. Involvement of nitric oxide in the reflex relaxation of the stomach to accommodate food or fluid. Nature 351, 477–479 (1991).

    CAS  Article  Google Scholar 

  24. 24

    Jensen, M.E. & Wefel, J.S. Human plaque pH responses to meals and the effects of chewing gum. Br. Dental. J. 167, 204–208 (1989).

    CAS  Article  Google Scholar 

  25. 25

    Walker, A.M., Jick, H. & Porter, J. Drug-related superinfection in hospitalized patients. JAMA 242, 1273–1275 (1979).

    CAS  Article  Google Scholar 

  26. 26

    Caldwell, J.R. & Cluff, L.E. Adverse reactions to antimicrobial agents. JAMA 230, 77–80 (1974).

    CAS  Article  Google Scholar 

  27. 27

    Wennerholm, K. et al. Effect of xylitol and sorbitol in chewing-gums on mutans streptococci, plaque pH and mineral loss of enamel. Caries Res. 28, 48–54 (1994).

    CAS  Article  Google Scholar 

  28. 28

    Braun, C. & Zumft, W.G. Marker exchange of the structural genes for nitric oxide reductase blocks the denitrification pathway of Pseudomonas stutzeri at nitric oxide. J. biol. Chem. 266, 22785–22788 (1991).

    CAS  PubMed  Google Scholar 

  29. 29

    Bodis, S. & Haregewoin, A. Evidence for the release and possible neural regulation of nitric oxide in human saliva. Biochem. biophys. Res. Commun. 194, 347–350 (1993).

    CAS  Article  Google Scholar 

  30. 30

    Edwards, D.A.W., Fletcher, K. & Rowlands, E.N. Antagonism between perchlorate, iodide, thiocyanate, and nitrate for secretion in human saliva. Lancet 498–499 (1954).

  31. 31

    Sobala, G.M. et al. Ascorbic acid in the human stomach. Gastroenterology 97, 357–363 (1989).

    CAS  Article  Google Scholar 

  32. 32

    Ministry of Agriculture Fisheries and Food. Food surveillance paper No. 20: Nitrate, nitrite and N-nitroso compounds in food. 7 (HMSO Books, London, 1987).

  33. 33

    Ruddell, W.S.J., Blendis, L.M. & Walters, C.L. Nitrite and thiocyanate in gastric juice. Gut 17, 401 (1976).

    CAS  PubMed  Google Scholar 

  34. 34

    Tannenbaum, S.R., Sinskey, A.J. & Bishop, W. Nitrite in human saliva: Its possible relationship to nitrosamine formation. J. natn. Cancer Inst. 53, 79–84 (1974).

    CAS  Article  Google Scholar 

  35. 35

    Donahoe, W.E. Cyanosis in infants with nitrates in drinking water as a cause. Paediatrics 3, 308–311 (1949).

    CAS  Google Scholar 

  36. 36

    Rider, B.F. & Mellon, M.G. Colorimetric determination of nitrites. Ind. Engng Chem. 18, 96–99 (1946).

    CAS  Google Scholar 

  37. 37

    Stevens, A. Gram Method. in Theory and Practice of Histological Techniques (eds Bancroft, J.D. & Stevens, A.) 290–293 (Churchill Livingstone, London, 1990).

    Google Scholar 

  38. 38

    Gundersen, J.G. Notes on the estimation of the numerical density of arbitrary profiles. J. Microsc. 111, 219–223 (1977).

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Duncan, C., Dougall, H., Johnston, P. et al. Chemical generation of nitric oxide in the mouth from the enterosalivary circulation of dietary nitrate. Nat Med 1, 546–551 (1995). https://doi.org/10.1038/nm0695-546

Download citation

Search

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing