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trol. For example, the use of pluramycin to 
freeze TBP-TAT A binding complexes ap­
pears to offer significant possibilities for 
examining the assembly of transcriptional 
complexes. Just as antibiotics were invalu­
able tools in elucidating the steps in pro­
tein synthesis, specific DNA-reactive com­
pounds may be useful probes for 
unraveling the complexities of transcrip­
tional control. 
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Multidrug resistance: Locked in the vault? 
The discovery that multidrug resistance 
could be explained by transmembrane 
transporter molecules (MRP and PgP) act­
ing as pumps to remove toxic drugs was 
soon followed by the realization that some 
tumours resisted chemotherapy by an alter­
nate mechanism. The article by Scheffer et 
al. in this issue of Nature Medicine• sheds 
new light on this important problem. This 
group has for some time been focusing on a 
protein, LRP, found to be overexpressed in 
non-PgP multidrug resistant tumour cell 
lines. In addition to its presence in drug-re­
sistant lines, LRP expression was shown to 
decrease in at least one line that lost the re­
sistant phenotype. It also appears to have a 
high predictive value for resistance to 
chemotherapy in acute myeloid leukemia 
and ovarian cardnoma.The present article, 
describes the isolation and sequencing of a 
full-length eDNA encoding LRP; surpris­
ingly it turns out to be the human homo­
logue of the major vault protein. This pro­
tein of which the eDNA was previously 
cloned and sequenced from rat and Dic­
tyostelium, is the major structural protein of 
the vault, a large abundant cytoplasmic ri­
bonucleoprotein particle which has been 
highly conserved from slime mold to man. 

Since vaults were first described nearly 
ten years ago', we have been searching for 
the function of these organelles. Structural 
studies reveal the vault to be a large (12.9 
megadaltons), ovoid barrel-like particle 
with dimensions of approximately 35 x 60 
nm. A single vault is composed of two 
eightfold symmetric halves and each half 
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can be shown to open into a delicate eight­
petaled flower (see figure, reviewed in 3). 
This unusual structure led us to examine 
vaults as possible components of the eight­
fold syntmetric nuclear pore complex 
(NPC). They are most similar to the central 
plug of the NPC, which has dimensions, 
mass and geometry nearly identical to the 
vault particle. This relationship has been 
supported by inlmunolocalization studies 
which demonstrate that vaults can associate 
with nuclear membranes and NPcs•. If 
vaults are NPC plugs, their abundance and 
cellular distribution suggests that they may 
function in nucleo-cytoplasmic transport. 
Vaults contain multiple copies of a single 
small RNA (vRNA) with a conserved sec­
ondary structure', making it tempting to 
speculate that the transport cargo of vaults 

A model of vault structure. Intact vaults 
unfold into a dual flower conformation. 
Reproduced with permission. 

is cellular RNA, which associates with vaults 
via an interaction with the vRNA. 

The evidence linking vaults and the mul­
tidrug resistance phenotype is still circum­
stantial. Resistance does not appear to be 
due solely to over expression of the major 
vault protein and may require the intact 
vault particle. A definitive role for vaults in 
multidrug resistance will require a direct 
demonstration that vault expression can 
confer resistance on cells and that specific 
interference with vaults in non-PgP mul­
tidrug resistant cell lines restores drug sensi­
tivity. For now, however, the prospect that 
vaults could play a role in mediating mul­
tidrug resistance opens new avenues for 
functional studies, and the exdting possi­
bility that anti-vault therapeutic reagents 
could be designed to lower the resistance of 
tumours to drug treatment. 
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