Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Nitric oxide in mucosal immunity

Nitric oxide induced by γδ T cells (pages 552–557) and derived from dietary nitrate (pages 546–551) may limit microorganism growth.

This is a preview of subscription content

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.


  1. 1

    Jones-Carson, J. et al. γδ T cell-induced nitric oxide production enhances resistance to mucosal candidiasis. Nature Med. 1, 552–557 (1995).

    CAS  Article  Google Scholar 

  2. 2

    Duncan, C. et al. Chemical generation of nitric oxide in the mouth from the enterosalivary circulation of dietary nitrate. Nature Med. 1, 546–551 (1995).

    CAS  Article  Google Scholar 

  3. 3

    Nathan, C. Nitric oxide as a secretory product of mammalian cells. FASEB J. 6, 3051–3064 (1992).

    CAS  Article  Google Scholar 

  4. 4

    Stamler, J.S., Singel, D. & Loscalzo, J. Biochemistry of nitric oxide and its redox-activated forms. Science 258, 1898–1902 (1992).

    CAS  Article  Google Scholar 

  5. 5

    Green, S.J. et al. Antimicrobial and immunopathological effects of cytokine-induce nitric oxide synthesis. Curr. Opin. infect. Diseases 6, 384–396 (1993).

    Google Scholar 

  6. 6

    Henry, Y. et al. EPR characterization of molecular targets for NO in mammalian cells and organelles. FASEB J. 7, 1124–1134 (1993).

    CAS  Article  Google Scholar 

  7. 7

    Hausladen, A. & Fridovich, I. Superoxide and peroxynitrite inactivate aconitases, nitric oxide does not. J. biol. Chem. 269, 29405–29408 (1994).

    CAS  PubMed  Google Scholar 

  8. 8

    Nathan, C. & Hibbs, J.B. Jr. Role of nitric oxide synthesis in macrophage antimicrobial activity. Curr. Opin. Immun. 3, 65–70 (1991).

    CAS  Article  Google Scholar 

  9. 9

    Schmidt, H.H.H. & Walter, U. Nitric oxide at work. Cell 78, 919–925 (1994).

    CAS  Article  Google Scholar 

  10. 10

    Schild, H. et al. The nature of major histocompatibility complex recognition by γδ T Cells. Cell 76, 29–37 (1994).

    CAS  Article  Google Scholar 

  11. 11

    Heiss, L.N. et al. Epithelial autotoxitity of nitric oxide: Role in the respiratory cytopathology of pertussis. Proc. natn. Acad. Sci. USA. 91, 267–270 (1994).

    CAS  Article  Google Scholar 

  12. 12

    Li, L. et al. Role of nitric oxide in lysis of tumor cells by cytotoxic-activated endothelial cells. Cancer Res. 51, 251–253 (1991).

    Google Scholar 

  13. 13

    Oswald, I.P. et al. Endothelial cells are activated by cytokine treatment to kill an intravascular parasite, Schistosoma mansoni, through the production of nitric oxide. Proc. natn. Acad. Sci. U.S.A. 91, 999–1003 (1994).

    CAS  Article  Google Scholar 

  14. 14

    Mayer et al. IFN-γ induced nitric production reduces Chlamydia trachomatis viability in McCoy cells. Infect. Immun. 61, 491–497 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. 15

    Seguin, M.C. et al. Induction of nitric oxide synthase protects against malaria in mice exposed to irradiated Plasmodium berghei infected mosquitoes: Involvement of IFN-γ and CD8+ T cells. J. exp. Med. 180, 353–358 (1994).

    CAS  Article  Google Scholar 

  16. 16

    Klotz, F. et al. Co-localization of inducible-nitric oxide synthase and Plasmodium berghei in hepatocytes from rats immunized with irradiated sporozoites. J. Immun. 154, 3391–3395 (1995).

    CAS  PubMed  Google Scholar 

  17. 17

    Marletta, M.A. Mammalian synthesis of nitrite, nitrate, nitric oxide, and N-nitrosating agents. Chem. Res. Tox. 1, 249–257 (1988).

    CAS  Article  Google Scholar 

  18. 18

    Nunoshiba, T. et al. Activation by nitric oxide of an oxidative-stress response that defends Escherichia. coli against activated macrophages. Proc. natn. Acad. Sci. U.S.A. 90, 9993–9997 (1993).

    CAS  Article  Google Scholar 

  19. 19

    Hidalgo, E. & Demple, B. An iron-sulfur center essential for transcriptional activation by the redox sensing SoxR protein. EMBO J. 13, 138–146 (1994).

    CAS  Article  Google Scholar 

Download references

Author information



Rights and permissions

Reprints and Permissions

About this article

Cite this article

Green, S. Nitric oxide in mucosal immunity. Nat Med 1, 515–517 (1995).

Download citation

Further reading


Quick links