Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

The biology of VEGF and its receptors

Abstract

Vascular endothelial growth factor (VEGF) is a key regulator of physiological angiogenesis during embryogenesis, skeletal growth and reproductive functions. VEGF has also been implicated in pathological angiogenesis associated with tumors, intraocular neovascular disorders and other conditions. The biological effects of VEGF are mediated by two receptor tyrosine kinases (RTKs), VEGFR-1 and VEGFR-2, which differ considerably in signaling properties. Non-signaling co-receptors also modulate VEGF RTK signaling. Currently, several VEGF inhibitors are undergoing clinical testing in several malignancies. VEGF inhibition is also being tested as a strategy for the prevention of angiogenesis, vascular leakage and visual loss in age-related macular degeneration.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The VEGF isoforms and their interaction with VEGF receptors.

Debbie Maizels

Figure 2: Role of the VEGF receptor tyrosine kinases in different cell types.

Debbie Maizels

Figure 3: Differential effects of VEGFR-1 (R1) and VEGFR-2 (R2) in LSECs.

Debbie Maizels

Similar content being viewed by others

References

  1. Folkman, J. & Shing, Y. Angiogenesis. J. Biol. Chem. 267, 10931–10934 (1992).

    Article  CAS  PubMed  Google Scholar 

  2. Yancopoulos, G.D. et al. Vascular-specific growth factors and blood vessel formation. Nature 407, 242–248 (2000).

    Article  CAS  PubMed  Google Scholar 

  3. Ferrara, N. VEGF and the quest for tumour angiogenesis factors. Nat. Rev. Cancer 2, 795–803 (2002).

    Article  CAS  PubMed  Google Scholar 

  4. Ferrara, N. & Alitalo, K. Clinical applications of angiogenic growth factors and their inhibitors. Nat. Med. 5, 1359–1364 (1999).

    Article  CAS  PubMed  Google Scholar 

  5. Carmeliet, P. Mechanisms of angiogenesis and arteriogenesis. Nat. Med. 6, 389–395 (2000).

    Article  CAS  PubMed  Google Scholar 

  6. Ferrara, N. & Davis-Smyth, T. The biology of vascular endothelial growth factor. Endocr. Rev. 18, 4–25 (1997).

    Article  CAS  PubMed  Google Scholar 

  7. Neufeld, G., Cohen, T., Gengrinovitch, S. & Poltorak, Z. Vascular endothelial growth factor (VEGF) and its receptors. FASEB J. 13, 9–22 (1999).

    Article  CAS  PubMed  Google Scholar 

  8. Karkkainen, M.J., Makinen, T. & Alitalo, K. Lymphatic endothelium: a new frontier of metastasis research. Nat. Cell Biol. 4, E2–E5 (2002).

    Article  CAS  PubMed  Google Scholar 

  9. Leung, D.W., Cachianes, G., Kuang, W.J., Goeddel, D.V. & Ferrara, N. Vascular endothelial growth factor is a secreted angiogenic mitogen. Science 246, 1306–1309 (1989).

    Article  CAS  PubMed  Google Scholar 

  10. Plouet, J., Schilling, J. & Gospodarowicz, D. Isolation and characterization of a newly identified endothelial cell mitogen produced by AtT20 cells. EMBO J. 8, 3801–3808 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Nagy, J.A. et al. Vascular permeability factor/vascular endothelial growth factor induces lymphangiogenesis as well as angiogenesis. J. Exp. Med. 196, 1497–1506 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Matsumoto, T. & Claesson-Welsh, L. VEGF receptor signal transduction. Science STKE 112 (RE21), 1–17 (2001).

    Google Scholar 

  13. Compernolle, V. et al. Loss of HIF-2α and inhibition of VEGF impair fetal lung maturation, whereas treatment with VEGF prevents fatal respiratory distress in premature mice. Nat. Med. 8, 702–710 (2002).

    Article  CAS  PubMed  Google Scholar 

  14. Gerber, H.P., Dixit, V. & Ferrara, N. Vascular endothelial growth factor induces expression of the antiapoptotic proteins Bcl-2 and A1 in vascular endothelial cells. J. Biol. Chem. 273, 13313–13316 (1998).

    Article  CAS  PubMed  Google Scholar 

  15. Gerber, H.P. et al. VEGF regulates endothelial cell survival by the PI3-kinase/Akt signal transduction pathway. Requirement for Flk-1/KDR activation. J. Biol. Chem. 273, 30366–30343 (1998).

    Article  Google Scholar 

  16. Benjamin, L.E., Golijanin, D., Itin, A., Pode, D. & Keshet, E. Selective ablation of immature blood vessels in established human tumors follows vascular endothelial growth factor withdrawal. J. Clin. Invest. 103, 159–165 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Yuan, F. et al. Time-dependent vascular regression and permeability changes in established human tumor xenografts induced by an anti-vascular endothelial growth factor/vascular permeability factor antibody. Proc. Natl. Acad. Sci. USA 93, 14765–14770 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Gerber, H.P. et al. VEGF is required for growth and survival in neonatal mice. Development 126, 1149–1159 (1999).

    Article  CAS  PubMed  Google Scholar 

  19. Clauss, M. et al. Vascular permeability factor: a tumor-derived polypeptide that induces endothelial cell and monocyte procoagulant activity, and promotes monocyte migration. J. Exp. Med. 172, 1535–1545 (1990).

    Article  CAS  PubMed  Google Scholar 

  20. Broxmeyer, H.E. et al. Myeloid progenitor cell regulatory effects of vascular endothelial cell growth factor. Int. J. Hematol. 62, 203–215 (1995).

    Article  CAS  PubMed  Google Scholar 

  21. Gabrilovich, D.I. et al. Production of vascular endothelial growth factor by human tumors inhibits the functional maturation of dendritic cells. Nat. Med. 2, 1096–1103 (1996).

    Article  CAS  PubMed  Google Scholar 

  22. Hattori, K. et al. Vascular endothelial growth factor and angiopoietin-1 stimulate postnatal hematopoiesis by recruitment of vasculogenic and hematopoietic stem cells. J. Exp Med. 193, 1005–1014 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Gerber, H.-P. et al. Vascular endothelial growth factor regulates hematopoietic stem cell survival by an internal autocrine loop mechanism. Nature 417, 954–958 (2002).

    Article  CAS  PubMed  Google Scholar 

  24. Senger, D.R. et al. Tumor cells secrete a vascular permeability factor that promotes accumulation of ascites fluid. Science 219, 983–985 (1983).

    Article  CAS  PubMed  Google Scholar 

  25. Dvorak, H.F., Brown, L.F., Detmar, M. & Dvorak, A.M. Vascular permeability factor/vascular endothelial growth factor, microvascular hyperpermeability, and angiogenesis. Am. J. Pathol. 146, 1029–1039 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Bates, D.O. & Curry, F.E. Vascular endothelial growth factor increases microvascular permeability via a Ca(2+)-dependent pathway. Am. J. Physiol. 273, H687–H694 (1997).

    Article  CAS  PubMed  Google Scholar 

  27. Roberts, W.G. & Palade, G.E. Increased microvascular permeability and endothelial fenestration induced by vascular endothelial growth factor. J. Cell Sci. 108, 2369–2379 (1995).

    Article  CAS  PubMed  Google Scholar 

  28. Ku, D.D., Zaleski, J.K., Liu, S. & Brock, T.A. Vascular endothelial growth factor induces EDRF-dependent relaxation in coronary arteries. Am. J. Physiol. 265, H586–H592 (1993).

    CAS  PubMed  Google Scholar 

  29. Yang, R. et al. Effects of vascular endothelial growth factor on hemodynamics and cardiac performance. J. Cardiovasc. Pharmacol. 27, 838–844 (1996).

    Article  CAS  PubMed  Google Scholar 

  30. Houck, K.A. et al. The vascular endothelial growth factor family: identification of a fourth molecular species and characterization of alternative splicing of RNA. Mol. Endocrinol. 5, 1806–1814 (1991).

    Article  CAS  PubMed  Google Scholar 

  31. Tischer, E. et al. The human gene for vascular endothelial growth factor. Multiple protein forms are encoded through alternative exon splicing. J. Biol. Chem. 266, 11947–11954 (1991).

    Article  CAS  PubMed  Google Scholar 

  32. Ferrara, N. & Henzel, W.J. Pituitary follicular cells secrete a novel heparin-binding growth factor specific for vascular endothelial cells. Biochem. Biophys. Res. Commun. 161, 851–858 (1989).

    Article  CAS  PubMed  Google Scholar 

  33. Houck, K.A., Leung, D.W., Rowland, A.M., Winer, J. & Ferrara, N. Dual regulation of vascular endothelial growth factor bioavailability by genetic and proteolytic mechanisms. J. Biol. Chem. 267, 26031–26037 (1992).

    Article  CAS  PubMed  Google Scholar 

  34. Park, J.E., Keller, H.-A. & Ferrara, N. The vascular endothelial growth factor isoforms (VEGF): differential deposition into the subepithelial extracellular matrix and bioactivity of extracellular matrix-bound VEGF. Mol. Biol. Cell 4, 1317–1326 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Keyt, B.A. et al. The carboxyl-terminal domain (111–165) of vascular endothelial growth factor is critical for its mitogenic potency. J. Biol. Chem. 271, 7788–7795 (1996).

    Article  CAS  PubMed  Google Scholar 

  36. Carmeliet, P. et al. Impaired myocardial angiogenesis and ischemic cardiomyopathy in mice lacking the vascular endothelila growth factor isoforms VEGF164 and VEGF188 . Nat. Med. 5, 495–502 (1999).

    Article  CAS  PubMed  Google Scholar 

  37. Ruhrberg, C. et al. Spatially restricted patterning cues provided by heparin-binding VEGFA control blood vessel branching morphogenesis. Genes Dev. 16, 2684–2698 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Dor, Y., Porat, R. & Keshet, E. Vascular endothelial growth factor and vascular adjustments to perturbations in oxygen homeostasis. Am. J. Physiol. 280, C1367–C1374 (2001).

    Article  CAS  Google Scholar 

  39. Semenza, G. Signal transduction to hypoxia-inducible factor 1. Biochem. Pharmacol. 64, 993–998 (2002).

    Article  CAS  PubMed  Google Scholar 

  40. Mole, D.R., Maxwell, P.H., Pugh, C.W. & Ratcliffe, P.J. Regulation of HIF by the von Hippel-Lindau tumour suppressor: implications for cellular oxygen sensing. IUBMB Life 52, 43–47 (2001).

    Article  CAS  PubMed  Google Scholar 

  41. Siemeister, G. et al. Reversion of deregulated expression of vascular endothelial growth factor in human renal carcinoma cells by von Hippel-Lindau tumor suppressor protein. Cancer Res. 56, 2299–2301 (1996).

    CAS  PubMed  Google Scholar 

  42. Iliopoulos, O., Levy, A.P., Jiang, C., Kaelin, W.G. & Goldberg, M.A. Negative regulation of hypoxia-inducible genes by the von Hippel-Lindau protein. Proc. Natl. Acad. Sci. USA 93, 10595–10599 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Maxwell, P.H. et al. The tumour suppressor protein VHL targets hypoxia-inducible factors for oxygen-dependent proteolysis. Nature 399, 271–275 (1999).

    Article  CAS  PubMed  Google Scholar 

  44. Maxwell, P.H. & Ratcliffe, P.J. Oxygen sensors and angiogenesis. Semin. Cell Dev. Biol. 13, 29–37 (2002).

    Article  CAS  PubMed  Google Scholar 

  45. Safran, M. & Kaelin, W.J. HIF hydroxylation and the mammalian oxygen-sensing pathway. J. Clin Invest. 111, 779–783 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Grugel, S., Finkenzeller, G., Weindel, K., Barleon, B. & Marme, D. Both v-Ha-Ras and v-Raf stimulate expression of the vascular endothelial growth factor in NIH 3T3 cells. J. Biol. Chem. 270, 25915–25919 (1995).

    Article  CAS  PubMed  Google Scholar 

  47. Okada, F. et al. Impact of oncogenes in tumor angiogenesis: mutant K-ras up-regulation of vascular endothelial growth factor/vascular permeability factor is necessary, but not sufficient for tumorigenicity of human colorectal carcinoma cells. Proc. Natl. Acad. Sci. USA 95, 3609–3614 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Shibuya, M. et al. Nucleotide sequence and expression of a novel human receptor-type tyrosine kinase (flt) closely related to the fms family. Oncogene 8, 519–527 (1990).

    Google Scholar 

  49. Terman, B.I. et al. Identification of a new endothelial cell growth factor receptor tyrosine kinase. Oncogene 6, 1677–1683 (1991).

    CAS  PubMed  Google Scholar 

  50. de Vries, C. et al. The fms-like tyrosine kinase, a receptor for vascular endothelial growth factor. Science 255, 989–991 (1992).

    Article  CAS  PubMed  Google Scholar 

  51. Gerber, H.P., Condorelli, F., Park, J. & Ferrara, N. Differential transcriptional regulation of the two VEGF receptor genes. Flt-1, but not Flk-1/KDR, is up-regulated by hypoxia. J. Biol. Chem. 272, 23659–23667 (1997).

    Article  CAS  PubMed  Google Scholar 

  52. Park, J.E., Chen, H.H., Winer, J., Houck, K.A. & Ferrara, N. Placenta growth factor. Potentiation of vascular endothelial growth factor bioactivity, in vitro and in vivo, and high affinity binding to Flt-1 but not to Flk-1/KDR. J. Biol. Chem. 269, 25646–25654 (1994).

    Article  CAS  PubMed  Google Scholar 

  53. Olofsson, B. et al. Vascular endothelial growth factor B (VEGFB) binds to VEGF receptor-1 and regulates plasminogen activator activity in endothelial cells. Proc. Natl. Acad. Sci. USA 95, 11709–11714 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Kendall, R.L. & Thomas, K.A. Inhibition of vascular endothelial cell growth factor activity by an endogenously encoded soluble receptor. Proc. Natl. Acad. Sci. USA 90, 10705–10709 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Davis-Smyth, T., Chen, H., Park, J., Presta, L.G. & Ferrara, N. The second immunoglobulin-like domain of the VEGF tyrosine kinase receptor Flt-1 determines ligand binding and may initiate a signal transduction cascade. EMBO J. 15, 4919–4927 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Waltenberger, J., Claesson Welsh, L., Siegbahn, A., Shibuya, M. & Heldin, C.H. Different signal transduction properties of KDR and Flt1, two receptors for vascular endothelial growth factor. J. Biol. Chem. 269, 26988–26995 (1994).

    Article  CAS  PubMed  Google Scholar 

  57. Carmeliet, P. et al. Synergism between vascular endothelial growth factor and placental growth factor contributes to angiogenesis and plasma extravasation in pathological conditions. Nat. Med. 7, 575–583 (2001).

    Article  CAS  PubMed  Google Scholar 

  58. Gille, H. et al. A repressor sequence in the juxtamembrane domain of Flt-1 (VEGFR-1) constitutively inhibits VEGF-dependent PI 3 kinase activation and endothelial cell migration. EMBO J. 19, 4064–4073 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Maru, Y., Yamaguchi, S. & Shibuya, M. Flt-1, a receptor for vascular endothelial growth factor, has transforming and morphogenic potentials. Oncogene 16, 2585–2595 (1998).

    Article  CAS  PubMed  Google Scholar 

  60. Fong, G.H., Rossant, J., Gertsenstein, M. & Breitman, M.L. Role of the Flt-1 receptor tyrosine kinase in regulating the assembly of vascular endothelium. Nature 376, 66–70 (1995).

    Article  CAS  PubMed  Google Scholar 

  61. Fong, G.H., Zhang, L., Bryce, D.M. & Peng, J. Increased hemangioblast commitment, not vascular disorganization, is the primary defect in flt-1 knock-out mice. Development 126, 3015–3025 (1999).

    Article  CAS  PubMed  Google Scholar 

  62. Hiratsuka, S., Minowa, O., Kuno, J., Noda, T. & Shibuya, M. Flt-1 lacking the tyrosine kinase domain is sufficient for normal development and angiogenesis in mice. Proc. Natl. Acad. Sci. USA 4, 9349–9354 (1998).

    Article  Google Scholar 

  63. Barleon, B. et al. Migration of human monocytes in response to vascular endothelial growth factor (VEGF) is mediated via the VEGF receptor flt-1. Blood 87, 3336–3343 (1996).

    Article  CAS  PubMed  Google Scholar 

  64. Hiratsuka, S. et al. MMP9 induction by vascular endothelial growth factor receptor-1 is involved in lung-specific metastasis. Cancer Cell 2, 289–300 (2002).

    Article  CAS  PubMed  Google Scholar 

  65. Hattori, K. et al. Placental growth factor reconstitutes hematopoiesis by recruiting VEGFR1(+) stem cells from bone-marrow microenvironment. Nat. Med. 8, 841–849 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Luttun, A. et al. Revascularization of ischemic tissues by PLGF treatment, and inhibition of tumor angiogenesis, arthritis and atherosclerosis by anti-Flt1. Nat. Med. 8, 831–840 (2002).

    Article  CAS  PubMed  Google Scholar 

  67. LeCouter, J. et al. Angiogenesis-independent endothelial protection of liver: role of VEGFR-1. Science 299, 890–893 (2003).

    Article  CAS  PubMed  Google Scholar 

  68. Terman, B.I. et al. Identification of the KDR tyrosine kinase as a receptor for vascular endothelial cell growth factor. Biochem. Biophys. Res. Commun. 187, 1579–1586 (1992).

    Article  CAS  PubMed  Google Scholar 

  69. Shalaby, F. et al. Failure of blood-island formation and vasculogenesis in Flk-1-deficient mice. Nature 376, 62–66 (1995).

    Article  CAS  PubMed  Google Scholar 

  70. Guo, D., Jia, Q., Song, H.Y., Warren, R.S. & Donner, D.B. Vascular endothelial cell growth factor promotes tyrosine phosphorylation of mediators of signal transduction that contain SH2 domains. Association with endothelial cell proliferation. J. Biol. Chem. 270, 6729–6733 (1995).

    Article  CAS  PubMed  Google Scholar 

  71. Eliceiri, B.P. et al. Selective requirement for Src kinases during VEGF-induced angiogenesis and vascular permeability. Mol. Cell 4, 915–924 (1999).

    Article  CAS  PubMed  Google Scholar 

  72. Takahashi, T., Ueno, H. & Shibuya, M. VEGF activates protein kinase C-dependent, but Ras-independent Raf-MEK-MAP kinase pathway for DNA synthesis in primary endothelial cells. Oncogene 18, 2221–2230 (1999).

    Article  CAS  PubMed  Google Scholar 

  73. Gille, H. et al. Analysis of biological effects and signaling properties of Flt-1 (VEGFR-1) and KDR (VEGFR-2). A reassessment using novel receptor-specific VEGF mutants. J. Biol. Chem. 276, 3222–3230 (2001).

    Article  CAS  PubMed  Google Scholar 

  74. Adini, A., Kornaga, T., Firoozbakht, F. & Benjamin, L.E. Placental growth factor is a survival factor for tumor endothelial cells and macrophages. Cancer Res. 62, 2749–2752 (2002).

    CAS  PubMed  Google Scholar 

  75. Soker, S., Fidder, H., Neufeld, G. & Klagsbrun, M. Characterization of novel vascular endothelial growth factor (VEGF) receptors on tumor cells that bind VEGF165 via its exon 7-encoded domain. J. Biol. Chem. 271, 5761–5767 (1996).

    Article  CAS  PubMed  Google Scholar 

  76. Soker, S., Takashima, S., Miao, H.Q., Neufeld, G. & Klagsbrun, M. Neuropilin-1 is expressed by endothelial and tumor cells as an isoform-specific receptor for vascular endothelial growth factor. Cell 92, 735–745 (1998).

    Article  CAS  PubMed  Google Scholar 

  77. Neufeld, G. et al. The neuropilins: multifunctional semaphorin and VEGF receptors that modulate axon guidance and angiogenesis. Trends Cardiovasc. Med. 12, 13–19 (2002).

    Article  CAS  PubMed  Google Scholar 

  78. Kawasaki, T. et al. A requirement for neuropilin-1 in embryonic vessel formation, Development 126, 4895–4902 (1999).

    Article  CAS  PubMed  Google Scholar 

  79. Lee, P. et al. Neuropilin-1 is required for vascular development and is a mediator of VEGF-dependent angiogenesis in zebrafish. Proc. Natl. Acad. Sci. USA 99, 10470–10475 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Carmeliet, P. et al. Abnormal blood vessel development and lethality in embryos lacking a single VEGF allele. Nature 380, 435–439 (1996).

    Article  CAS  PubMed  Google Scholar 

  81. Ferrara, N. et al. Heterozygous embryonic lethality induced by targeted inactivation of the VEGF gene. Nature 380, 439–442 (1996).

    Article  CAS  PubMed  Google Scholar 

  82. Bellomo, D. et al. Mice lacking the vascular endothelial growth factor-B gene (Vegfb) have smaller hearts, dysfunctional coronary vasculature, and impaired recovery from cardiac ischemia. Circ. Res. 86, E29–E35 (2000).

    Article  CAS  PubMed  Google Scholar 

  83. Kitamoto, Y., Tokunaga, H. & Tomita, K. Vascular endothelial growth factor is an essential molecule for mouse kidney development: glomerulogenesis and nephrogenesis. J. Clin. Invest. 99, 2351–2357 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Eremina, V. et al. Glomerular-specific alterations of VEGFA expression lead to distinct congenital and acquired renal diseases. J. Clin. Invest. 111, 707–716 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Ryan, A.M. et al. Preclinical safety evaluation of rhuMAbVEGF, an antiangiogenic humanized monoclonal antibody. Toxicol. Pathol. 27, 78–86 (1999).

    Article  CAS  PubMed  Google Scholar 

  86. Poole, A.R. The growth plate: cellular physiology, cartilage assembly and mineralization. in Cartilage: Molecular Aspects (eds. Hall, B.K. & Newman, S.A.) 179–211 (CRC Press, Boca Raton, Florida, 1991).

    Google Scholar 

  87. Gerber, H.P. et al. VEGF couples hypertrophic cartilage remodeling, ossification and angiogenesis during endochondral bone formation. Nat. Med. 5, 623–628 (1999).

    Article  CAS  PubMed  Google Scholar 

  88. Haigh, J.J., Gerber, H.P., Ferrara, N. & Wagner, E.F. Conditional inactivation of VEGFA in areas of collagen2a1 expression results in embryonic lethality in the heterozygous state. Development 127, 1445–1453 (2000).

    Article  CAS  PubMed  Google Scholar 

  89. Zelzer, E. et al. Skeletal defects in VEGF(120/120) mice reveal multiple roles for VEGF in skeletogenesis. Development 129, 1893–1904 (2002).

    Article  CAS  PubMed  Google Scholar 

  90. Goede, V., Schmidt, T., Kimmina, S., Kozian, D. & Augustin, H.G. Analysis of blood vessel maturation processes during cyclic ovarian angiogenesis. Lab. Invest. 78, 1385–1394 (1998).

    CAS  PubMed  Google Scholar 

  91. Phillips, H.S., Hains, J., Leung, D.W. & Ferrara, N. Vascular endothelial growth factor is expressed in rat corpus luteum. Endocrinology 127, 965–967 (1990).

    Article  CAS  PubMed  Google Scholar 

  92. Ferrara, N. et al. Vascular endothelial growth factor is essential for corpus luteum angiogenesis. Nat. Med. 4, 336–340 (1998).

    Article  CAS  PubMed  Google Scholar 

  93. Fraser, H.M. et al. Suppression of luteal angiogenesis in the primate after neutralization of vascular endothelial growth factor. Endocrinology 141, 995–1000 (2000).

    Article  CAS  PubMed  Google Scholar 

  94. Zimmermann, R.C. et al. Short-term administration of antivascular endothelial growth factor antibody in the late follicular phase delays follicular development in the rhesus monkey. J. Clin. Endocrinol. Metab. 86, 768–772 (2001).

    CAS  PubMed  Google Scholar 

  95. LeCouter, J. et al. Identification of an angiogenic mitogen selective for endocrine gland endothelium. Nature 412, 877–884 (2001).

    Article  CAS  PubMed  Google Scholar 

  96. LeCouter, J., Lin, R. & Ferrara, N. Endocrine gland-derived VEGF and the emerging hypothesis of organ-specific regulation of angiogenesis. Nat. Med. 8, 913–917 (2002).

    Article  CAS  PubMed  Google Scholar 

  97. Ferrara, N. et al. Differential expression of the angiogenic factor genes VEGF and EG-VEGF in normal and polycystic human ovaries. Am. J. Path. 162, 1881–1893 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Kim, K.J. et al. Inhibition of vascular endothelial growth factor-induced angiogenesis suppresses tumor growth in vivo. Nature 362, 841–844 (1993).

    Article  CAS  PubMed  Google Scholar 

  99. Fukumura, D. et al. Tumor induction of VEGF promoter activity in stromal cells. Cell 94, 715–725 (1998).

    Article  CAS  PubMed  Google Scholar 

  100. Gerber, H.P., Kowalski, J., Sherman, D., Eberhard, D.A. & Ferrara, N. Complete inhibition of rhabdomyosarcoma xenograft growth and neovascularization requires blockade of both tumor and host vascular endothelial growth factor. Cancer Res. 60, 6253–6258 (2000).

    CAS  PubMed  Google Scholar 

  101. Tsuzuki, Y. et al. Vascular endothelial growth factor (VEGF) modulation by targeting hypoxia-inducible factor-1α—> hypoxia response element—> VEGF cascade differ entially regulates vascular response and growth rate in tumors, Cancer Res. 60, 6248–6252 (2000).

    CAS  PubMed  Google Scholar 

  102. Inoue, M., Hager, J.H., Ferrara, N., Gerber, H.P. & Hanahan, D. VEGFA has a critical, nonredundant role in angiogenic switching and pancreatic β cell carcinogenesis. Cancer Cell. 1, 193–202 (2002).

    Article  CAS  PubMed  Google Scholar 

  103. Bergers, G. et al. Matrix metalloproteinase-9 triggers the angiogenic switch during carcinogenesis. Nat. Cell Biol. 2, 737–744 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Klement, G. et al. Continuous low-dose therapy with vinblastine and VEGF receptor-2 antibody induces sustained tumor regression without overt toxicity. J. Clin. Invest. 105, R15–R24 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Lee, C.G. et al. Anti-vascular endothelial growth factor treatment augments tumor radiation response under normoxic or hypoxic conditions. Cancer Res. 60, 5565–5570 (2000).

    CAS  PubMed  Google Scholar 

  106. Presta, L.G. et al. Humanization of an anti-VEGF monoclonal antibody for the therapy of solid tumors and other disorders. Cancer Res. 57, 4593–4599 (1997).

    CAS  PubMed  Google Scholar 

  107. Prewett, M. et al. Antivascular endothelial growth factor receptor (fetal liver kinase 1) monoclonal antibody inhibits tumor angiogenesis. Cancer Res. 59, 5209–5218 (1999).

    CAS  PubMed  Google Scholar 

  108. Wood, J.M. et al. PTK787/ZK 222584, a novel and potent inhibitor of vascular endothelial growth factor receptor tyrosine kinases, impairs vascular endothelial growth factor-induced responses and tumor growth after oral administration. Cancer Res. 60, 2178–2189 (2000).

    CAS  PubMed  Google Scholar 

  109. Holash, J. VEGF-Trap: a VEGF blocker with potent antitumor effects. Proc. Natl. Acad. Sci. USA 99, 11393–11398 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Kabbinavar, F. et al. Phase II, randomized trial comparing bevacizumab plus fluorouracil (FU)/leucovorin (LV) with FU/LV alone in patients with metastatic colorectal cancer. J. Clin. Oncol. 21, 60–65 (2003).

    Article  CAS  PubMed  Google Scholar 

  111. Yang, J.C. et al. A randomized trial of bevacizumab (anti-VEGF antibody) in metastatic renal cancer. N. Engl. J. Med. (in the press).

  112. Gerber, H.P. & Ferrara, N. The role of VEGF in normal and neoplastic hematopoiesis. J. Mol. Med. 81, 20–31 (2003).

    Article  CAS  PubMed  Google Scholar 

  113. Smolich, B.D. et al. The antiangiogenic protein kinase inhibitors SU5416 and SU6668 inhibit the SCF receptor (c-kit) in a human myeloid leukemia cell line and in acute myeloid leukemi blasts. Blood 97, 1413–1421 (2001).

    Article  CAS  PubMed  Google Scholar 

  114. Dias, S. et al. Autocrine stimulation of VEGFR-2 activates human leukemic cell growth and migration. J. Clin. Invest. 106, 511–521 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Garner, A. Vascular diseases. in Pathobiology of Ocular Disease 2nd edn. (eds. Garner, A. & Klintworth, G.K.) 1625–1710 (Marcel Dekker, New York, 1994).

    Google Scholar 

  116. Aiello, L.P. et al. Vascular endothelial growth factor in ocular fluid of patients with diabetic retinopathy and other retinal disorders. N. Engl. J. Med. 331, 1480–1487 (1994).

    Article  CAS  PubMed  Google Scholar 

  117. Malecaze, F. et al. Detection of vascular endothelial growth factor mRNA and vascular endothelial growth factor-like activity in proliferative diabetic retinopathy. Arch. Ophthalmol. 112, 1476–1482 (1994).

    Article  CAS  PubMed  Google Scholar 

  118. Aiello, L.P. et al. Suppression of retinal neovascularization in vivo by inhibition of vascular endothelial growth factor (VEGF) using soluble VEGF-receptor chimeric proteins. Proc. Natl. Acad. Sci. USA 92, 10457–10461 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Adamis, A.P. et al. Inhibition of vascular endothelial growth factor prevents retinal ischemia-associated iris neovascularization in a nonhuman primate. Arch. Ophthalmol. 114, 66–71 (1996).

    Article  CAS  PubMed  Google Scholar 

  120. Lopez, P.F., Sippy, B.D., Lambert, H.M., Thach, A.B. & Hinton, D.R. Transdifferentiated retinal pigment epithelial cells are immunoreactive for vascular endothelial growth factor in surgically excised age-related macular degeneration-related choroidal neovascular membranes. Invest. Ophthalmol. Vis. Sci. 37, 855–868 (1996).

    CAS  PubMed  Google Scholar 

  121. Chen, Y. et al. Selection and analysis of an optimized anti-VEGF antibody: crystal structure of an affinity-matured Fab in complex with antigen. J. Mol. Biol. 293, 865–881 (1999).

    Article  CAS  PubMed  Google Scholar 

  122. Ruckman, J. et al. 2'-Fluoropyrimidine RNA-based aptamers to the 165-amino acid form of vascular endothelial growth factor (VEGF165). Inhibition of receptor binding and VEGF-induced vascular permeability through interactions requiring the exon 7-encoded domain. J. Biol. Chem. 273, 20556–20567 (1998).

    Article  CAS  PubMed  Google Scholar 

  123. Krzystolik, M.G. et al. Prevention of experimental choroidal neovascularization with intravitreal anti-vascular endothelial growth factor antibody fragment. Arch. Ophthalmol. 120, 338–346 (2002).

    Article  CAS  PubMed  Google Scholar 

  124. Detmar, M. et al. Keratinocyte-derived vascular permeability factor (vascular endothelial growth factor) is a potent mitogen for dermal microvascular endothelial cells. J. Invest. Dermatol. 105, 44–50 (1995).

    Article  CAS  PubMed  Google Scholar 

  125. Detmar, M. et al. Increased microvascular density and enhanced leukocyte rolling and adhesion in the skin of VEGF transgenic mice. J. Invest. Dermatol. 111, 1–6 (1998).

    Article  CAS  PubMed  Google Scholar 

  126. Cramer, T. HIF1α is essential for myeloid cell-mediated inflammation. Cell 112, 645–657 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Kovacs, Z., Ikezaki, K., Samoto, K., Inamura, T. & Fukui, M. VEGF and flt. Expression time kinetics in rat brain infarct. Stroke 27, 1865–1872 (1996).

    Article  CAS  PubMed  Google Scholar 

  128. van Bruggen, N. et al. VEGF antagonism reduces edema formation and tissue damage after ischemia/reperfusion injury in the mouse brain. J. Clin. Invest. 104, 1613–1620 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Paul, R. et al. Src deficiency or blockade of Src activity in mice provides cerebral protection following stroke. Nat. Med. 7, 222–227 (2001).

    Article  CAS  PubMed  Google Scholar 

  130. Yen, S.S.C. Polycystic ovary syndrome (hyperandrogenic chronic anovulation). in Reproductive Endocrinology (eds. Yen, S.S.C., Jaffe, R.B. & Barbieri, R.L.) 436–478 (W.B. Saunders, Philadelphia, 1999).

    Google Scholar 

  131. McLaren, J. et al. Vascular endothelial growth factor is produced by peritoneal fluid macrophages in endometriosis and is regulated by ovarian steroids. J. Clin. Invest. 98, 482–489 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Maynard, S.E. et al. Excess placental soluble fms-like tyrosine kinase 1 (sFlt1) may contribute to endothelial dysfunction, hypertension, and proteinuria in preeclampsia. J. Clin. Invest. 111, 649–658 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Kerbel, R. & Folkman, J. Clinical translation of angiogenesis inhibitors. Nat. Rev. Cancer 2, 727–739 (2002).

    Article  CAS  PubMed  Google Scholar 

  134. Henry, T.D. et al. The VIVA trial: Vascular endothelial growth factor in ischemia for vascular angiogenesis. Circulation 107, 1359–1365 (2003).

    Article  CAS  PubMed  Google Scholar 

  135. Makinen, K. et al. Increased vascularity detected by digital subtraction angiography after VEGF gene transfer to human lower limb artery: a randomized, placebo-controlled, double-blinded phase II study. Mol. Ther. 6, 127–133 (2002).

    Article  CAS  PubMed  Google Scholar 

  136. Dor, Y. et al. Conditional switching of VEGF provides new insights into adult neovascularization and pro-angiogenic therapy. EMBO J. 21, 1939–1947 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Street, J. et al. Vascular endothelial growth factor stimulates bone repair by promoting angiogenesis and bone turnover. Proc. Natl. Acad. Sci. USA 99, 9656–9661 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Napoleone Ferrara.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ferrara, N., Gerber, HP. & LeCouter, J. The biology of VEGF and its receptors. Nat Med 9, 669–676 (2003). https://doi.org/10.1038/nm0603-669

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm0603-669

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing