Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Endothelial signaling during development

Abstract

Blood vessels perfuse all tissues in the body and mediate vital metabolic exchange between tissues and blood. Increasing evidence, however, points to a direct role for paracrine signaling between blood vessel cells and surrounding target organ cells, during embryonic development and cell differentiation. Understanding the nature of this signaling and its heterogeneity, both in the embryo and in adult tissues, may not only provide insights into mechanisms for normal developmental cell fate decisions, but could also lead to novel targeted therapeutic approaches for a variety of diseases such as heart disease, diabetes or cancer.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Morphology of mural cells associated with large and small blood vessels.

Debbie Maizels

Figure 2: Capillary wall morphology.

Debbie Maizels

Figure 3: Vessel wall assembly.

Debbie Maizels

Figure 4: Capillary endothelium and neurogenesis.

Debbie Maizels

Figure 5: Endothelial signals during pancreas and liver development.

Debbie Maizels

Similar content being viewed by others

References

  1. Florey, L. The endothelial cell. Br. Med. J. 5512, 487–490 (1966).

    Article  Google Scholar 

  2. Garlanda, C. & Dejana, E. Heterogeneity of endothelial cells. Specific markers. Arterioscler. Thromb. Vasc. Biol. 17, 1193–1202 (1997).

    Article  CAS  PubMed  Google Scholar 

  3. Majno, G. & Joris, I. Endothelium 1977: a review. Adv. Exp. Med. Biol. 104, 169–225, 481–526 (1978).

    Article  CAS  PubMed  Google Scholar 

  4. Thorin, E. & Shreeve, S.M. Heterogeneity of vascular endothelial cells in normal and disease states. Pharmacol. Ther. 78, 155–166 (1998).

    Article  CAS  PubMed  Google Scholar 

  5. Pasqualini, R., Arap, W. & McDonald, D.M. Probing the structural and molecular diversity of tumor vasculature. Trends Mol. Med. 8, 563–571 (2002).

    Article  CAS  PubMed  Google Scholar 

  6. Suter, E.R. & Majno, G. Passage of lipid across vascular endothelium in newborn rats. An electron microscopic study. J. Cell Biol. 27, 163–177 (1965).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Gerritsen, M.E. Functional heterogeneity of vascular endothelial cells. Biochem. Pharmacol. 36, 2701–2711 (1987).

    Article  CAS  PubMed  Google Scholar 

  8. Abbott, N.J. Astrocyte-endothelial interactions and blood-brain barrier permeability. J. Anat. 200, 629–638 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Kmiec, Z. Cooperation of liver cells in health and disease. Adv. Anat. Embryol. Cell Biol. 161, III–XIII, 1–151 (2001).

    CAS  PubMed  Google Scholar 

  10. Auerbach, R. Vascular endothelial cell differentiation: organ-specificity and selective affinities as the basis for developing anti-cancer strategies. Int. J. Radiat. Biol. 60, 1–10 (1991).

    Article  CAS  PubMed  Google Scholar 

  11. Rajotte, D. & Ruoslahti, E. Membrane dipeptidase is the receptor for a lung-targeting peptide identified by in vivo phage display. J. Biol. Chem. 274, 11593–11598 (1999).

    Article  CAS  PubMed  Google Scholar 

  12. Essler, M. & Ruoslahti, E. Molecular specialization of breast vasculature: a breast-homing phage-displayed peptide binds to aminopeptidase P in breast vasculature. Proc. Natl. Acad. Sci. USA 99, 2252–2257 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Pasqualini, R. et al. Aminopeptidase N is a receptor for tumor-homing peptides and a target for inhibiting angiogenesis. Cancer Res. 60, 722–727 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Pasqualini, R. & Ruoslahti, E. Organ targeting in vivo using phage display peptide libraries. Nature 380, 364–366 (1996).

    Article  CAS  PubMed  Google Scholar 

  15. Rajotte, D. et al. Molecular heterogeneity of the vascular endothelium revealed by in vivo phage display. J. Clin. Invest. 102, 430–437 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Samoylova, T.I. & Smith, B.F. Elucidation of muscle-binding peptides by phage display screening. Muscle Nerve 22, 460–466 (1999).

    Article  CAS  PubMed  Google Scholar 

  17. Wang, H.U., Chen, Z.F. & Anderson, D.J. Molecular distinction and angiogenic interaction between embryonic arteries and veins revealed by ephrin-B2 and its receptor Eph-B4. Cell 93, 741–753 (1998).

    Article  CAS  PubMed  Google Scholar 

  18. Lawson, N.D. et al. Notch signaling is required for arterial-venous differentiation during embryonic vascular development. Development 128, 3675–3683 (2001).

    Article  CAS  PubMed  Google Scholar 

  19. Zhong, T.P., Rosenberg, M., Mohideen, M.A., Weinstein, B. & Fishman, M.C. gridlock, an HLH gene required for assembly of the aorta in zebrafish. Science 287, 1820–1824 (2000).

    Article  CAS  PubMed  Google Scholar 

  20. Muller, A.M., Hermanns, M.I., Cronen, C. & Kirkpatrick, C.J. Comparative study of adhesion molecule expression in cultured human macro- and microvascular endothelial cells. Exp. Mol. Pathol. 73, 171–180 (2002).

    Article  CAS  PubMed  Google Scholar 

  21. St Croix, B. et al. Genes expressed in human tumor endothelium. Science 289, 1197–1202 (2000).

    Article  CAS  PubMed  Google Scholar 

  22. Carson-Walter, E.B. et al. Cell surface tumor endothelial markers are conserved in mice and humans. Cancer Res. 61, 6649–6655 (2001).

    CAS  PubMed  Google Scholar 

  23. Lawson, N.D. & Weinstein, B.M. Arteries and veins: making a difference with zebrafish. Nat. Rev. Genet. 3, 674–682 (2002).

    Article  CAS  PubMed  Google Scholar 

  24. Lawson, N.D., Vogel, A.M. & Weinstein, B.M. Sonic hedgehog and vascular endothelial growth factor act upstream of the Notch pathway during arterial endothelial differentiation. Dev. Cell 3, 127–136 (2002).

    Article  CAS  PubMed  Google Scholar 

  25. Drake, C.J. & Fleming, P.A. Vasculogenesis in the day 6.5 to 9.5 mouse embryo. Blood 95, 1671–1679 (2000).

    Article  CAS  PubMed  Google Scholar 

  26. Stewart, P.A. & Wiley, M.J. Developing nervous tissue induces formation of blood-brain barrier characteristics in invading endothelial cells: a study using quail—chick transplantation chimeras. Dev. Biol. 84, 183–192 (1981).

    Article  CAS  PubMed  Google Scholar 

  27. Aird, W.C. et al. Vascular bed-specific expression of an endothelial cell gene is programmed by the tissue microenvironment. J. Cell Biol. 138, 1117–1124 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Ferrara, N. & Alitalo, K. Clinical applications of angiogenic growth factors and their inhibitors. Nat. Med. 5, 1359–1364 (1999).

    Article  CAS  PubMed  Google Scholar 

  29. D'Amore, P.A. & Ng, Y.S. Won't you be my neighbor? Local induction of arteriogenesis. Cell 110, 289–292 (2002).

    Article  CAS  PubMed  Google Scholar 

  30. Mukouyama, Y.S., Shin, D., Britsch, S., Taniguchi, M. & Anderson, D.J. Sensory nerves determine the pattern of arterial differentiation and blood vessel branching in the skin. Cell 109, 693–705 (2002).

    Article  CAS  PubMed  Google Scholar 

  31. Ng, Y.S., Rohan, R., Sunday, M.E., Demello, D.E. & D'Amore, P.A. Differential expression of VEGF isoforms in mouse during development and in the adult. Dev. Dyn. 220, 112–121 (2001).

    Article  CAS  PubMed  Google Scholar 

  32. Stone, J. et al. Development of retinal vasculature is mediated by hypoxia-induced vascular endothelial growth factor (VEGF) expression by neuroglia. J. Neurosci. 15, 4738–4747 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. LeCouter, J. et al. Identification of an angiogenic mitogen selective for endocrine gland endothelium. Nature 412, 877–884 (2001).

    Article  CAS  PubMed  Google Scholar 

  34. Vapaatalo, H. & Mervaala, E. Clinically important factors influencing endothelial function. Med. Sci. Monit. 7, 1075–1085 (2001).

    CAS  PubMed  Google Scholar 

  35. Kitamoto, Y., Tokunaga, H. & Tomita, K. Vascular endothelial growth factor is an essential molecule for mouse kidney development: glomerulogenesis and nephrogenesis. J. Clin. Invest. 99, 2351–2357 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Gerber, H.P. et al. VEGF is required for growth and survival in neonatal mice. Development 126, 1149–1159 (1999).

    Article  CAS  PubMed  Google Scholar 

  37. Zeng, X., Wert, S.E., Federici, R., Peters, K.G. & Whitsett, J.A. VEGF enhances pulmonary vasculogenesis and disrupts lung morphogenesis in vivo. Dev. Dyn. 211, 215–227 (1998).

    Article  CAS  PubMed  Google Scholar 

  38. Hungerford, J.E. & Little, C.D. Developmental biology of the vascular smooth muscle cell: building a multilayered vessel wall. J. Vasc. Res. 36, 2–27 (1999).

    Article  CAS  PubMed  Google Scholar 

  39. Zerwes, H.G. & Risau, W. Polarized secretion of a platelet-derived growth factor-like chemotactic factor by endothelial cells in vitro. J. Cell Biol. 105, 2037–2041 (1987).

    Article  CAS  PubMed  Google Scholar 

  40. Shinbrot, E., Peters, K.G. & Williams, L.T. Expression of the platelet-derived growth factor β receptor during organogenesis and tissue differentiation in the mouse embryo. Dev. Dyn. 199, 169–175 (1994).

    Article  CAS  PubMed  Google Scholar 

  41. Hirschi, K.K., Rohovsky, S.A. & D'Amore, P.A. PDGF, TGF-β, and heterotypic cell-cell interactions mediate endothelial cell-induced recruitment of 10T1/2 cells and their differentiation to a smooth muscle fate. J. Cell Biol. 141, 805–814 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Leveen, P. et al. Mice deficient for PDGF B show renal, cardiovascular, and hematological abnormalities. Genes Dev. 8, 1875–1887 (1994).

    Article  CAS  PubMed  Google Scholar 

  43. Lindahl, P., Johansson, B.R., Leveen, P. & Betsholtz, C. Pericyte loss and microaneurysm formation in PDGF-B-deficient mice. Science 277, 242–245 (1997).

    Article  CAS  PubMed  Google Scholar 

  44. Davis, S. et al. Isolation of angiopoietin-1, a ligand for the TIE2 receptor, by secretion-trap expression cloning. Cell 87, 1161–1169 (1996).

    Article  CAS  PubMed  Google Scholar 

  45. Suri, C. et al. Requisite role of angiopoietin-1, a ligand for the TIE2 receptor, during embryonic angiogenesis. Cell 87, 1171–1180 (1996).

    Article  CAS  PubMed  Google Scholar 

  46. Yoder, E.J. Modifications in astrocyte morphology and calcium signaling induced by a brain capillary endothelial cell line. Glia 38, 137–145 (2002).

    Article  PubMed  Google Scholar 

  47. Estrada, C., Bready, J.V., Berliner, J.A., Pardridge, W.M. & Cancilla, P.A. Astrocyte growth stimulation by a soluble factor produced by cerebral endothelial cells in vitro. J. Neuropathol. Exp. Neurol. 49, 539–549 (1990).

    Article  CAS  PubMed  Google Scholar 

  48. Rash, J.E., Yasumura, T., Hudson, C.S., Agre, P. & Nielsen, S. Direct immunogold labeling of aquaporin-4 in square arrays of astrocyte and ependymocyte plasma membranes in rat brain and spinal cord. Proc. Natl. Acad. Sci. USA 95, 11981–11986 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Mi, H., Haeberle, H. & Barres, B.A. Induction of astrocyte differentiation by endothelial cells. J. Neurosci. 21, 1538–1547 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Shah, N.M., Groves, A.K. & Anderson, D.J. Alternative neural crest cell fates are instructively promoted by TGFβ superfamily members. Cell 85, 331–343 (1996).

    Article  CAS  PubMed  Google Scholar 

  51. Reissmann, E. et al. Involvement of bone morphogenetic protein-4 and bone morphogenetic protein-7 in the differentiation of the adrenergic phenotype in developing sympathetic neurons. Development 122, 2079–2088 (1996).

    Article  CAS  PubMed  Google Scholar 

  52. Palmer, T.D., Willhoite, A.R. & Gage, F.H. Vascular niche for adult hippocampal neurogenesis. J. Comp. Neurol. 425, 479–494 (2000).

    Article  CAS  PubMed  Google Scholar 

  53. Leventhal, C., Rafii, S., Rafii, D., Shahar, A. & Goldman, S.A. Endothelial trophic support of neuronal production and recruitment from the adult mammalian subependyma. Mol. Cell. Neurosci. 13, 450–464 (1999).

    Article  CAS  PubMed  Google Scholar 

  54. Louissaint, A., Jr., Rao, S., Leventhal, C. & Goldman, S.A. Coordinated interaction of neurogenesis and angiogenesis in the adult songbird brain. Neuron 34, 945–960 (2002).

    Article  CAS  PubMed  Google Scholar 

  55. Varzaneh, F.E., Shillabeer, G., Wong, K.L. & Lau, D.C. Extracellular matrix components secreted by microvascular endothelial cells stimulate preadipocyte differentiation in vitro. Metabolism 43, 906–912 (1994).

    Article  CAS  PubMed  Google Scholar 

  56. Hutley, L.J. et al. Human adipose tissue endothelial cells promote preadipocyte proliferation. Am. J. Physiol. Endocrinol. Metab. 281, E1037–E1044 (2001).

    Article  CAS  PubMed  Google Scholar 

  57. Gerber, H.P. & Ferrara, N. Angiogenesis and bone growth. Trends Cardiovasc. Med. 10, 223–228 (2000).

    Article  CAS  PubMed  Google Scholar 

  58. Bittner, K., Vischer, P., Bartholmes, P. & Bruckner, P. Role of the subchondral vascular system in endochondral ossification: endothelial cells specifically derepress late differentiation in resting chondrocytes in vitro. Exp. Cell Res. 238, 491–497 (1998).

    Article  CAS  PubMed  Google Scholar 

  59. Gerber, H.P. et al. VEGF couples hypertrophic cartilage remodeling, ossification and angiogenesis during endochondral bone formation. Nat. Med. 5, 623–628 (1999).

    Article  CAS  PubMed  Google Scholar 

  60. Villars, F. et al. Effect of HUVEC on human osteoprogenitor cell differentiation needs heterotypic gap junction communication. Am. J. Physiol Cell. Physiol. 282, C775–C785 (2002).

    Article  CAS  PubMed  Google Scholar 

  61. Mizrachi, Y., Naranjo, J.R., Levi, B.Z., Pollard, H.B. & Lelkes, P.I. PC12 cells differentiate into chromaffin cell-like phenotype in coculture with adrenal medullary endothelial cells. Proc. Natl. Acad. Sci. USA 87, 6161–6165 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Rosolowsky, L.J., Hanke, C.J. & Campbell, W.B. Adrenal capillary endothelial cells stimulate aldosterone release through a protein that is distinct from endothelin. Endocrinology 140, 4411–4418 (1999).

    Article  CAS  PubMed  Google Scholar 

  63. Hanke, C.J. & Campbell, W.B. Endothelial cell nitric oxide inhibits aldosterone synthesis in zona glomerulosa cells: modulation by oxygen. Am. J. Physiol. Endocrinol. Metab. 279, E846–E854 (2000).

    Article  CAS  PubMed  Google Scholar 

  64. Dor, Y. et al. A novel role for VEGF in endocardial cushion formation and its potential contribution to congenital heart defects. Development 128, 1531–1538 (2001).

    Article  CAS  PubMed  Google Scholar 

  65. Ramsdell, A.F. & Markwald, R.R. Induction of endocardial cushion tissue in the avian heart is regulated, in part, by TGFβ-3-mediated autocrine signaling. Dev. Biol. 188, 64–74 (1997).

    Article  CAS  PubMed  Google Scholar 

  66. Brown, C.B., Boyer, A.S., Runyan, R.B. & Barnett, J.V. Requirement of type III TGF-β receptor for endocardial cell transformation in the heart. Science 283, 2080–2082 (1999).

    Article  CAS  PubMed  Google Scholar 

  67. Stainier, D.Y. et al. Mutations affecting the formation and function of the cardiovascular system in the zebrafish embryo. Development 123, 285–292 (1996).

    Article  CAS  PubMed  Google Scholar 

  68. Shalaby, F. et al. Failure of blood-island formation and vasculogenesis in Flk-1-deficient mice. Nature 376, 62–66 (1995).

    Article  CAS  PubMed  Google Scholar 

  69. Meyer, D. & Birchmeier, C. Multiple essential functions of neuregulin in development. Nature 378, 386–390 (1995).

    Article  CAS  PubMed  Google Scholar 

  70. Li, K., Rouleau, J.L., Calderone, A., Andries, J.L. & Brutsaert, D.L. Endocardial function in pacing-induced heart failure in the dog. J. Mol. Cell. Cardiol. 25, 529–540 (1993).

    Article  CAS  PubMed  Google Scholar 

  71. Brutsaert, D.L., Fransen, P., Andries, L.J., De Keulenaer, G.W. & Sys, S.U. Cardiac endothelium and myocardial function. Cardiovasc. Res. 38, 281–290 (1998).

    Article  CAS  PubMed  Google Scholar 

  72. Stoos, B.A., Carretero, O.A., Farhy, R.D., Scicli, G. & Garvin, J.L. Endothelium-derived relaxing factor inhibits transport and increases cGMP content in cultured mouse cortical collecting duct cells. J. Clin. Invest. 89, 761–765 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Linas, S.L. & Repine, J.E. Endothelial cells regulate proximal tubule epithelial cell sodium transport. Kidney Int. 55, 1251–1258 (1999).

    Article  CAS  PubMed  Google Scholar 

  74. Tufro, A., Norwood, V.F., Carey, R.M. & Gomez, R.A. Vascular endothelial growth factor induces nephrogenesis and vasculogenesis. J. Am. Soc. Nephrol. 10, 2125–2134 (1999).

    Article  CAS  PubMed  Google Scholar 

  75. Majumdar, A. & Drummond, I.A. Podocyte differentiation in the absence of endothelial cells as revealed in the zebrafish avascular mutant, cloche. Dev. Genet. 24, 220–229 (1999).

    Article  CAS  PubMed  Google Scholar 

  76. Serluca, F.C., Drummond, I.A. & Fishman, M.C. Endothelial signaling in kidney morphogenesis: a role for hemodynamic forces. Curr. Biol. 12, 492–497 (2002).

    Article  CAS  PubMed  Google Scholar 

  77. Lammert, E., Cleaver, O. & Melton, D. Induction of pancreatic differentiation by signals from blood vessels. Science 294, 564–567 (2001).

    Article  CAS  PubMed  Google Scholar 

  78. Matsumoto, K., Yoshitomi, H., Rossant, J. & Zaret, K.S. Liver organogenesis promoted by endothelial cells prior to vascular function. Science 294, 559–563 (2001).

    Article  CAS  PubMed  Google Scholar 

  79. Liao, W. et al. The zebrafish gene cloche acts upstream of a flk-1 homologue to regulate endothelial cell differentiation. Development 124, 381–389 (1997).

    Article  CAS  PubMed  Google Scholar 

  80. Field, H.A., Ober, E.A., Roeser, T. & Stainer, D.Y. Formation of the digestive system in zebrafish. I. Liver morphogenesis. Dev. Biol. 253, 279–280 (2003).

    Article  CAS  PubMed  Google Scholar 

  81. Hogan, B.L. & Kolodziej, P.A. Organogenesis: molecular mechanisms of tubulogenesis. Nat. Rev. Genet. 3, 513–523 (2002).

    Article  CAS  PubMed  Google Scholar 

  82. Stainier, D.Y., Weinstein, B.M., Detrich, H.W., 3rd, Zon, L.I. & Fishman, M.C. Cloche, an early acting zebrafish gene, is required by both the endothelial and hematopoietic lineages. Development 121, 3141–31450 (1995).

    Article  CAS  PubMed  Google Scholar 

  83. Thompson, M.A. et al. The cloche and spadetail genes differentially affect hematopoiesis and vasculogenesis. Dev. Biol. 197, 248–269 (1998).

    Article  CAS  PubMed  Google Scholar 

  84. Galloway, J.L. & Zon, L.I. Ontogeny of hematopoiesis: examining the emergence of hematopoietic cells in the vertebrate embryo. Curr. Top. Dev. Biol. 53, 139–158 (2003).

    Article  CAS  PubMed  Google Scholar 

  85. LeCouter, J. et al. Angiogenesis-independent endothelial protection of liver: role of VEGFR-1. Science 299, 890–893 (2003).

    Article  CAS  PubMed  Google Scholar 

  86. Orr, F.W., Wang, H.H., Lafrenie, R.M., Scherbarth, S. & Nance, D.M. Interactions between cancer cells and the endothelium in metastasis. J. Pathol. 190, 310–329 (2000).

    Article  CAS  PubMed  Google Scholar 

  87. Ennett, A.B. & Mooney, D.J. Tissue engineering strategies for in vivo neovascularisation. Expert Opin. Biol. Ther. 2, 805–818 (2002).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Y. Dor and R. Lee for critical reading of the manuscript, and E. Lammert for useful discussions. O.C. is supported by the Howard Hughes Medical Institute and D.A.M. is an investigator of the Howard Hughes Medical Institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ondine Cleaver.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cleaver, O., Melton, D. Endothelial signaling during development. Nat Med 9, 661–668 (2003). https://doi.org/10.1038/nm0603-661

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm0603-661

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing