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approaches have been able to reduce IL-2
toxicity or even allow administration of the
intended number of IL-2 doses, let alone
increase IL-2 doses.

Samlowski et al. tested M40403 in three
different mouse tumor models, all different
in terms of patterns of disease and sensitiv-
ity to IL-2 antitumor effects3. In none of
the three tumor systems did M40403
impair IL-2 antitumor efficacy, while
allowing a twofold increase in IL-2 to be
administered. The reversal of IL-2-induced
hypotension and increased survival was
associated with elevation in circulating cat-
echolamines.

Most impressively, in the two mouse
tumor models not very sensitive to IL-2
(RENCA and MethA), IL-2 and M40403 led
to a much greater antitumor effect, with
long-term cures, even when combined with
standard minimally effective IL-2 doses.

How does M40403 enhance IL-2 effi-
cacy? In a small series of in vitro and in vivo
experiments, M40403 seemed to enhance
the IL-2-mediated generation of lym-
phokine-activated killer activity through
an expansion of cells capable of cytolysis
not restricted by major histocompatibility
class. It seems that adherent macrophage

populations may suppress lymphokine-
activated killer activity through the pro-
duction of O2

•–. Blocking O2
•–production

prevents macrophage-mediated immuno-
suppression. This combination may limit
IL-2 toxicity while enhancing antitumor
efficacy (Fig. 1).

Even now, there are other approaches
that may offer the same hope, including
retinoids (all-trans-retinoic acid) and
inhibitors of vascular endothelial growth
factor11,12. It is clear that much work needs
to be done, but translating the results of
Samlowski et al. for use in cancer patients
may allow others to join those few long-
term survivors with advanced melanoma
or renal cancer.
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HIV hijacks dendritic cells
Dendritic cells take up invading pathogens and other
antigens, process them and present them to T cells. In
the 1 May issue of Sciencexpress, David McDonald et al.
report that HIV exploits this function to infect more T
cells, its primary target.

Dendritic cells take up HIV particles and gather them
in protected vesicles. The investigators found that when
a dendritic cell (left; see Supplementary Movie 1 online)
meets a target cell (right; DNA in blue and actin in red),
the virus particles (green) scattered around the dendritic
cell mobilize and cluster along the contact surface
between the two cells. At the same time, HIV receptors
also travel to the contact site. The flurry of activity at the
interface enables some of the HIV particles to cross the
divide into the target cell as shown here. The target cell
in this image is a fibroblast transfected with the HIV
receptor CD4 and its coreceptor CXCR4; the authors
noted similar behavior using T cells as the targets.

The authors propose that HIV takes advantage of the
large surface area of dendritic cells to get as many
particles taken up as possible and then concentrate
them at the interface with the target cell, thereby
increasing the chance of productive T-cell infection.
Recent studies with other pathogens suggest that this
exploitation may be fairly widespread, say the authors.
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