Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Somatic cell cloned transgenic bovine neurons for transplantation in parkinsonian rats

Abstract

Parkinson's disease symptoms can be improved by transplanting fetal dopamine cells into the putamen of parkinsonian patients. Because the supply of human donor tissue is limited and variable, an alternative and genetically modifiable non-human source of tissue would be valuable. We have generated cloned transgenic bovine embryos, 42% of which developed beyond 40 days. Dopamine cells collected from the ventral mesencephalon of the cloned fetuses 42 to 50 days post-conception survived transplantation into immunosuppressed parkinsonian rats and cells from cloned and wild-type embryos improved motor performance. Somatic cell cloning can efficiently produce transgenic animal tissue for treating parkinsonism.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Freed, C.R. et al., Transplantation of human fetal dopamine cells for Parkinson's disease. Arch. Neurol. 47, 505–512 (1990).

    Article  CAS  Google Scholar 

  2. Lindvall, O. et al. Grafts of fetal dopamine neurons survive and improve motor function in Parkinson's disease. Science 247, 574–577 (1990).

    Article  CAS  Google Scholar 

  3. Freed, C.R. et al. Survival of implanted fetal dopamine cells and neurologic improvement 12 to 46 months after transplantation for Parkinson's disease. N. Engl. J. Med. 327, 1549–1555 (1992).

    Article  CAS  Google Scholar 

  4. Peschanski, M. et al. Bilateral motor improvement and alteration of L-dopa effect in two patients with Parkinson's disease following intrastriatal transplantation of foetal ventral mesencephalon. Brain 117, 487–499 (1994).

    Article  Google Scholar 

  5. Kordower, J.H. et al. Neuropathological evidence of graft survival and striatal reinnervation after the transplantation of fetal mesencephalic tissue in a patient with Parkinson's disease. N. Engl. J. Med. 332, 1118–1124 (1995).

    Article  CAS  Google Scholar 

  6. Freeman, T.B. et al. Bilateral fetal nigral transplantation into the postcommissural putamen in Parkinson's disease. Ann. Neurol. 38, 379–388 (1995).

    Article  CAS  Google Scholar 

  7. Kopyov, O.V. et al. Clinical study of fetal mesencephalic intracerebral transplants for the treatment of Parkinson's disease. Cell Transplantation 5, 327–337 (1996).

    Article  CAS  Google Scholar 

  8. Wenning, G.K. et al. Short- and long-term survival and function of unilateral intrastriatal dopaminergic grafts in Parkinson's disease. Ann. Neurol. 42, 95–107 (1997).

    Article  CAS  Google Scholar 

  9. Freeman, T.B. et al. Cross-species intracerebral grafting of embryonic swine dopaminergic neurons, in Progress in Brain Research (Eds. Cash D.M. & Sladek J. R.) 473–477 (Elsevier, NY, 1988).

    Chapter  Google Scholar 

  10. Huffaker, T.K. et al. Xenografting of fetal pig ventral mesencephalon corrects motor asymmetry in the rat model of Parkinson's disease. Exp. Brain Res. 77, 329–336 (1989).

    Article  CAS  Google Scholar 

  11. Bjorklund, A., Stenevi, U., Dunnett, S.B. & Gage, F.H. Cross-species neural grafting in a rat model of Parkinson's disease. Nature 298, 652–654 (1982).

    Article  CAS  Google Scholar 

  12. Galpern, W.R., Burns, L.H., Deacon, T.W., Dinsmore, J. & Isacson, O. Xenotransplantation of porcine fetal ventral mesencephalon in a rat model of Parkinson's disease: Functional recovery and graft morphology. Exp. Neurol. 140, 1–13 (1996).

    Article  CAS  Google Scholar 

  13. Deacon, T. et al. Histological evidence of fetal pig neural cell survival after transplantation into a patient with Parkinson's disease. Nature Med. 3, 350–353 (1997).

    Article  CAS  Google Scholar 

  14. Wilmut, I., Schnieke, A.E., McWhir, J., Kind, A.J. & Campbell, K.H.S. Viable offspring derived from fetal and adult mammalian cells. Nature 385, 810–813 (1997).

    Article  CAS  Google Scholar 

  15. Schnieke, A.E. et al. Human factor IX transgenic sheep produced by transfer of nuclei from transfected fetal fibroblasts. Science 278, 2130–2133 (1997).

    Article  CAS  Google Scholar 

  16. Chervonsky, A.W. et al. The role of Fas in autoimmune diabetes. Cell 89, 17–24 (1997).

    Article  CAS  Google Scholar 

  17. Takayama, H. et al. Basic fibroblast growth factor increases dopaminergic graft survival and function in a rat model of Parkinson's disease. Nature Med. 1, 53–58 (1995).

    Article  CAS  Google Scholar 

  18. Clarkson, E.D., Zawada, W.M. & Freed, C.R. GDNF improves survival and reduces apoptotic cell death in human embryonic dopaminergic neurons in vitro. Cell Tissue Res. 289, 207–210 (1997).

    Article  CAS  Google Scholar 

  19. Park, T.H. & Mytilineou, C. Protection from 1-methyl-4-phenylpyridinium (MPP+) toxicity and stimulation of regrowth of MPP+-damaged dopaminergic fibers by treatment of mesencephalic cultures with EGF and basic FGF. Brain Res. 559, 83–97 (1992).

    Article  Google Scholar 

  20. Beck, K.D., Knüsel, B. & Hefti, F. The nature of the trophic action of brain-derived neurotrophic factor, des (1–3)-insulin-like growth factor-1 and basic fibroblast growth factor on mesencephalic dopaminergic neurons developing in culture. Neuroscience 52, 855–866 (1993).

    Article  CAS  Google Scholar 

  21. Fawcett, W., Barker, R.A., Dunnett, S.B. Dopaminergic neuronal survival and the effects of bFGF in expiant, three dimensional and monolayer cultures of embryonic rat ventral mesencephalon. Exp. Brain Res. 106, 275–282 (1995).

    Article  CAS  Google Scholar 

  22. Zawada, W.M., Kirschman, D.L., Cohen, J.J., Heidenreich, K.A. & Freed, C.R. Growth factors rescue embryonic dopamine neurons from programmed cell death. Exp. Neurol. 140, 60–67 (1996).

    Article  CAS  Google Scholar 

  23. Hyman, C. et al. BDNF is a neurotrophic factor for dopaminergic neurons of the substantia nigra. Nature ISO, 230–232 (1991).

    Article  CAS  Google Scholar 

  24. Dole, R.F., Crandall, J.E., Dyer, C.A., Aucoin, J.M. & Smith, F.I. Comparison of promoter strengths on gene delivery into the mammalian brain cells using AAV vectors. Gene Therapy 3, 437–447 (1996).

    Google Scholar 

  25. Prather, R.S., Sims, M.N. & First, N.L. Nuclear transplantation in early pig embryos. Biol. Reprod. 41, 414–418 (1989).

    Article  CAS  Google Scholar 

  26. Pursel, V.G. & Rexroad, C.E. Jr. Status of research with transgenic farm animals. J. Animal Sci. 71 (Suppl. 3), 10–19 (1993).

    Article  Google Scholar 

  27. Brundin, P. et al. Behavioral effects of human fetal dopamine neurons grafted in a rat model of Parkinson's disease. Exp. Brain Res. 65, 235–240 (1986).

    Article  CAS  Google Scholar 

  28. Saadi, S. & Platt, L.J. Immunology of xenotransplantation. Life Sci. 62, 365–387 (1998).

    Article  CAS  Google Scholar 

  29. Sandberg, P.R., Borlongan, C.V., Saporta, S. & Cameron, D.F. Testis-derived sertoli cells survive and provide localized immunoprotection for xenografts in rat brain. Nature Biotech. 14, 1692–1695 (1996).

    Article  Google Scholar 

  30. Frederickson, R.M., Micheau, M.R., Iwamoto, A. & Miyamoto, N.G. 5′ flanking and first intron sequences of the human β-actin gene required for efficient promoter activity. Nucleic Acid Res. 17, 253–270 (1989).

    Article  CAS  Google Scholar 

  31. Aki, T., Yanagisawa, S. & Akanuma, H. Identification and characterization of positive regulatory elements in the human glyceraldehyde 3-phosphate dehydrogenase gene promoter. J. Biochem. 122, 271–278 (1997).

    Article  CAS  Google Scholar 

  32. Wagener, S., Norley, S. zur Megede J., Kurth, R. & Cichutek, K. Induction of antibodies against SIV antigens after intramuscular nucleic acid inoculation using complex expression constructs. J. Biotech. 44, 59–65 (1996).

    Article  CAS  Google Scholar 

  33. Peel, A.L., Zolotukhin, S., Schrimsher, G.W., Muzyczka, N. & Reier, P.J. Efficient transduction of green fluorescent protein in spinal cord neurons using adeno-associated virus vectors containing cell type-specific promoters. Gene Therapy 4, 16–24 (1997).

    Article  CAS  Google Scholar 

  34. Stice, S.L., Strelchenko, N.S., Keefer, C.L. & Matthews, L. Pluripotent bovine embryonic cell lines direct embryonic development following nuclear transfer. Biol. Reprod. 54, 100–110 (1996).

    Article  CAS  Google Scholar 

  35. Dunnett, S.B., & Björklund, A. Staging and dissection of rat embryos. in Neural Transplantation: A Practical Approach (Dunnett, S. B. St BJörklund, A.) 1–19 (Oxford University Press, NY, 1992).

    Google Scholar 

  36. Richards, J.B., Sabol, K.E. & Freed, C.R. Unilateral dopamine depletion causes bilateral deficits in conditioned rotation in rats. Pharmacol. Biochem. Behav. 36, 217–223 (1990).

    Article  CAS  Google Scholar 

  37. Abercrombie, M. Estimation of nuclear population from microtome sections. Anat. Rec. 94, 239–247 (1946).

    Article  CAS  Google Scholar 

  38. Shedlock, A.M., Haygood, M.G., Pietsch, T.W. & Bentzen, P. Enhanced DNA extraction and PCR amplification of mitochondriai genes from formalin-fixed museum specimens. BioTech. 22, 394–399 (1997).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zawada, W., Cibelli, J., Choi, P. et al. Somatic cell cloned transgenic bovine neurons for transplantation in parkinsonian rats. Nat Med 4, 569–574 (1998). https://doi.org/10.1038/nm0598-569

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm0598-569

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing