Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Intracoronary gene transfer of fibroblast growth factor–5 increases blood flow and contractile function in an ischemic region of the heart

Abstract

Increased coronary blood vessel development could potentially benefit patients with ischemic heart disease. In a model of stress–induced myocardial ischemia, intracoronary injection of a recombinant adenovirus expressing human fibroblast growth factor–5 (FCF–5) resulted in messenger RNA and protein expression of the transferred gene. Two weeks after gene transfer, regional abnormalities in stress–induced function and blood flow were improved, effects that persisted for 12 weeks. Improved blood flow and function were associated with evidence of angiogenesis. This report documents, for the first time, successful amelioration of abnormalities in myocardial blood flow and function following in vivo gene transfer.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Benharroch, D. & Birnbaum, D. Biology of the fibroblast growth factor gene family. Israeli J. Med. Sciences 26, 212–219 (1990).

    CAS  Google Scholar 

  2. Goldfarb, M., Bates, B., Drucker, B., Hardin, J. & Haub, O. Expression and possible functions of the FGF-5 gene. Ann. NY Acad. Sci. 638, 38–52 (1991).

    Article  CAS  Google Scholar 

  3. Folkman, J. & Shing, Y., J. Biol. Chem. 267, 10931–10934 (1992).

    CAS  PubMed  Google Scholar 

  4. Thompson, J.A. et al. Heparin-binding growth factor 1 induces the formation of organoid neovascular structures in vivo. Proc. Natl. Acad. Sci. USA 86, 7928–7932 (1989).

    Article  CAS  Google Scholar 

  5. Morrow, N.G., Kraus, W.E., Moore, J.W., Williams, R.S. & Swain, J.L. Increased expression of fibroblast growth factors in a rabbit skeletal muscle model of exercise conditioning. J. Clin. Invest. 85, 1816–1820 (1990).

    Article  CAS  Google Scholar 

  6. Yanagisawa-Miwa, A. et al. Salvage of infarcted myocardium by angiogenic action of basic fibroblast growth factor. Science 257, 1401–1403 (1992).

    Article  CAS  Google Scholar 

  7. Harada, K. et al. Basic fibroblast growth factor improves myocardial function in chronically ischemic porcine hearts. J. Clin. Invest. 94, 623–630 (1994).

    Article  CAS  Google Scholar 

  8. Unger, E.F. et al. Basic fibroblast growth factor enhances myocardial collateral flow in a canine model. Am. J. Physiol. 266, H1588–H1595 (1994).

    CAS  PubMed  Google Scholar 

  9. Banai, S. et al. Angiogenic-induced enhancement of collateral blood flow to ischemic myocardium by vascular endothelial growth factor in dogs. Circulation 89, 2183–2189 (1994).

    Article  CAS  Google Scholar 

  10. Stratford-Perricaudet, L.D., Makeh, I., Perricaudet, M. & Briand, P. Widespread long-term gene transfer to mouse skeletal muscles and heart. J. Clin. Invest. 90, 626–630 (1992).

    Article  CAS  Google Scholar 

  11. Barr, E. et al. Gene transfer into the heart using replication-defective adenovirus. Gene Ther. 1, 51–58 (1994).

    CAS  PubMed  Google Scholar 

  12. Ohno, T. et al. Gene therapy for vascular smooth muscle cell proliferation after arterial injury. Science 265, 781–784 (1994).

    Article  CAS  Google Scholar 

  13. Guzman, R.J., Lemarchand, P., Crystal, R.G., Epstein, S.E. & Finkel, T. Efficient gene transfer into myocardium by direct injection of adenovirus vectors. Circ. Res. 73, 1202–1207 (1993).

    Article  CAS  Google Scholar 

  14. Kass-Eisler, K. et al. Quantitative determination of adenovirus-mediated gene delivery to rat cardiac myocytes in vitro and in vivo. Proc. Natl. Acad. Sci. USA 90, 11498–11502 (1993).

    Article  CAS  Google Scholar 

  15. McGrory, W.J., Bautista, D.S. & Graham, F.L. A simple technique for the rescue of early region I mutations into infectious human adenovirus type 5. Virology 163, 614–617 (1988).

    Article  CAS  Google Scholar 

  16. White, F.C., Carroll, S.M., Magnet, A. & Bloor, C.M. Coronary collateral development in swine after coronary artery occlusion. Circ. Res. 71, 1490–1500 (1992).

    Article  CAS  Google Scholar 

  17. Roth, D.M. et al. Development of coronary collateral circulation in left circumflex Ameroid-occluded swine myocardium. Am. J. Physiol. 253, H1279–H1288 (1987).

    CAS  PubMed  Google Scholar 

  18. Roth, D.M. et al. Effect of long-term exercise on regional myocardial function and coronary collateral development after gradual coronary artery occlusion in pigs. Circulation 82, 1778–1789 (1990).

    Article  CAS  Google Scholar 

  19. Hammond, H.K. & McKirnan, M.D. The effects of dobutamine and arbutamine on regional myocardial function in a porcine model of myocardial ischemia. J. Am. Coll. Cardiol. 23, 475–482 (1994).

    Article  CAS  Google Scholar 

  20. Hammond, H.K., Roth, D.A., McKirnan, M.D. & Ping, P. Regional myocardial down-regulation of the inhibitory GTP-binding protein (Giα2) and β-adrenergic receptors in a porcine model for chronic episodic ischemia. J. Clin. Invest. 92, 2644–2652 (1993).

    Article  CAS  Google Scholar 

  21. Goto, F., Goto, K., Weindel, K. & Folkman, J. Synergistic effects of vascular endothelial growth factor and basic fibroblast growth factor on the proliferation and cord formation of bovine capillary endothelial cells within collagen gels. Lab. Invest. 69, 508–517 (1993).

    CAS  PubMed  Google Scholar 

  22. Bernotat-Danielowski, S., Sharma, H.S., Schott, R.J. & Schaper, W. Generation and localisation of monoclonal antibodies against fibroblast growth factors in ischaemic collateralised porcine myocardium. Cardiovasc. Res. 27, 1220–1228 (1993).

    Article  CAS  Google Scholar 

  23. Casscells, W. et al. Isolation, characterization, and localization of heparin binding growth factors in the heart. J. Clin. Invest. 85, 433–441 (1990).

    Article  CAS  Google Scholar 

  24. Nienaber, C.A., Salge, D., Spielmann, R.P., Montz, R. & Bleifeld, W. Detection of human collateral circulation by vasodilation-thallium-201 tomography. Am. J. Cardiol. 65, 991–998 (1990).

    Article  CAS  Google Scholar 

  25. Yang, Y. et al. Cellular immunity to viral antigens limits E1-deleted adenoviruses for gene therapy. Proc. Natl. Acad. Sci. USA 91, 4407–4411 (1994).

    Article  CAS  Google Scholar 

  26. French, B.A., Mazur, W., Geske, R.S. & Bolli, R. Direct in vivo gene transfer into porcine myocardium using replication-deficient adenoviral vectors. Circulation 90, 2414–2424 (1994).

    Article  CAS  Google Scholar 

  27. Moullier, P. et al. Adenoviral-mediated gene transfer to renal tubular cells in vivo. Kidney Int. 45, 1220–1225 (1994).

    Article  CAS  Google Scholar 

  28. Sahn, D.J., DeMaria, A.N., Kisslo, J. & Weyman, A. Recommendations regarding quantitation in M-mode echocardiography: Results of a survey of echocardiographic measurements. Circulation 58, 1072–1083 (1978).

    Article  CAS  Google Scholar 

  29. Skyba, D.M. et al. Quantification of myocardial perfusion with myocardial contrast echocardiography during left atrial injection of contrast: Implications for venous injection. Circulation 90, 1513–1521 (1994).

    Article  CAS  Google Scholar 

  30. Kajstura, J. et al. Myocyte cellular hyperplasia and myocyte cellular hypertrophy contribute to chronic ventricular remodeling in coronary artery narrowing-induced cardiomyopathy in rats. Circ. Res. 74, 383–400 (1994).

    Article  CAS  Google Scholar 

  31. Mathieu-Costello, O. Capillary tortuosity and degree of contraction or extension of skeletal muscles. Microvasc. Res. 33, 98–117 (1987).

    Article  CAS  Google Scholar 

  32. Poole, D.C. & Mathieu-Costello, O. Analysis of capillary geometry in rat subepicardium and subendocardium. Am. J. Physiol. 259, H204–H210 (1990).

    CAS  PubMed  Google Scholar 

  33. Kitaoka, T., Aotaki-Keen, A.E. & Hjelmeland, L.M. Distribution of FGF-5 in the rhesus macaque retina. Invest. Ophthalmol. Vis. Sci. 35, 3189–3198 (1994).

    CAS  PubMed  Google Scholar 

  34. Roth, D.A., Urasawa, K., Helmer, G.A. & Hammond, H.K. Down-regulation of cardiac GTP-binding proteins in right atrium and left ventricle in pacing-induced congestive heart failure. J. Clin. Invest. 91, 939–949 (1993).

    Article  CAS  Google Scholar 

  35. Ping, P. & Hammond, H.K. Diverse G protein and β-adrenergic receptor mRNA expression in normal and failing porcine hearts. Am. J. Physiol. 267, H2079–H2085 (1994).

    CAS  PubMed  Google Scholar 

  36. Tsai, P.S., Werner, S. & Weiner, R.I. Basic fibroblast growth factor is a neurotropic factor in GT1 gonadotropin-releasing hormone neuronal cell lines. Endocrinology 136, 3831–3838 (1995).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Giordano, F., Ping, P., McKirnan, M. et al. Intracoronary gene transfer of fibroblast growth factor–5 increases blood flow and contractile function in an ischemic region of the heart. Nat Med 2, 534–539 (1996). https://doi.org/10.1038/nm0596-534

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm0596-534

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing